Из приблизительно 100 гормонов человека около 20 вырабатывается клетками кишечника. Но еще больше гормонов и гормоноподобных веществ вырабатывается прилежащей кишечной микрофлорой как в количественном, так и в качественном отношении. Так, до 95 % серотонина, гормона радости и удовлетворенности, внутри человека вырабатывается бактериями его кишечника. Кто-то может пожалеть, что практически вся эта масса серотонина не может преодолевать гематоэнцефалический барьер и приносить в мозг алкомое; но эффекты серотонина чересчур разнообразны, и переизбыток его в клинической форме серотонинового синдрома весьма печален по его итогу.
Вообще, микрофлора кишечника человека, по некоторым оценкам, производит до полумиллиона различных веществ-метаболитов. Большинство из них мгновенно утилизируются в плавильном котле биохимических реакций внутри микроорганизмов, но некоторые способны накапливаться и выделяться. Многие из выделяющихся метаболитов обладают нейроактивностью, то есть способностью влиять на нервную систему хозяина. Среди важнейших из них можно назвать уже упоминавшийся BDNF, «комиссар» нейропластичности мозга, гамма-аминомасляную кислоту (ГАМК), ключевой нейромедиатор тормозных процессов, и глутаминовую кислоту (глутамат), важный нейромедиатор возбуждающих процессов в ЦНС позвоночных.
В свое время казалось удивительным открытием, что и «примитивные» микробы, и «высшие» животные и растения используют в целом один и тот же, или очень близкий, набор сигнальных молекул. Хотя смыслы, передаваемые этими сигналами у разных живых существ, даже очень близких, часто кардинально различаются. Вопрос, на который до сих пор нет однозначного ответа, – является ли это неким общим «языком» живого, приблизительно как единый нуклеотидный и аминокислотный код, только гораздо более расширенный и более «размытый», или этот набор «слов» многократно «изобретался» по частям заново в результате взаимодействия многоклеточных организмов с их микроскопическими сожителями.
Впервые этот вопрос поднял Джесси Рот (Jesse Roth) с соавторами в 1982 году, предположив, что молекулы, которые эндокринная и нервная системы человека используют для коммуникаций, появились еще у древнейших бактерий. Почти десять лет спустя врач-гастроэнтеролог и по совместительству выдающийся нейробиолог Эмеран Майер и замечательный математик и биоинформатик Пьер Бальди написали несколько статей, в которых выдвинули гипотезу об универсальности биологического «языка», в котором регуляторные пептиды животных и сигнальные молекулы микроорганизмов служат общими «словами» (Mayer E. A. and Baldi J. P., 1991). Майер и Бальди полагали, что сначала в сложившихся симбиотических отношениях бактерии научились коммуницировать с хозяевами с помощью своих уникальных молекул. Миллионы лет спустя «некоторые из этих молекул стали нейромедиаторами, гормонами, гастроинтестинальными пептидами, цитокинами и другими видами сигнальных молекул, которыми организм человека пользуется и сейчас» (Майер Э., 2016).
Другими важнейшими молекулами коммуникации – правда, только в одну сторону: от микрофлоры макроорганизму – являются короткоцепочечные жирные кислоты (КЦЖК). Их синтезируют кишечные бактерии в основном из пищевых растительных волокон. Для кишечных бактерий КЦЖК являются конечными продуктами метаболизма, поэтому бактерии активно экскретируют их наружу.
Есть три основных вида КЦЖК – уксусная кислота (ацетат), масляная кислота (бутират) и пропионовая кислота (пропионат). Несмотря на химическую близость, физиологические эффекты этих кислот совершенно разные. Ацетат и бутират – наиболее полезные КЦЖК для млекопитающих, особенно бутират, служащий основой собственного питания эпителия кишечника, сигналом спокойствия для энтеральной нервной системы. Бутират заметно снижает воспалительные процессы в организме, особенно в головном мозге. Наибольший благотворный эффект бутират оказывает на митохондрии. В кишечнике бутират в основном вырабатывают маслянокислые клостридии и вибрионы Butyrivibrio, относящиеся к Firmicutes, а также некоторые бактероиды.
С пропионатом, вырабатываемым в кишечнике преимущественно маслянокислыми клостридиями, напротив, связаны весьма неоднозначные эффекты. Так, при повышении концентрации в просвете кишечника выше определенного уровня пропионат ослабляет плотные контакты между клетками эпителия кишечника, увеличивая его проницаемость. С увеличением проницаемости возрастает концентрация пропионата в глубоких слоях оболочки кишечника, настраивая клетки иммунной системы на более активную реакцию, а энтеральную нервную систему – на возбуждение. На уровне центральной нервной системы пропионат поддерживает оксидативный стресс и через ряд косвенных эффектов снижает содержание в ней антиоксидантов и омега-3 жирных кислот. В то же время пропионовая кислота, как консервант, тормозит рост и размножение многих микроорганизмов. Очень чувствительны к пропионовой кислоте митохондрии, в известном смысле ближайшие родственники бактерий в составе хозяйской эукариотической клетки. Есть предположение, что именно подавление пропионатом митохондриальной функции в определенных нейронах и иммунных клетках головного мозга является ключевым звеном патогенеза аутизма (Giulivi C. et al., 2010). В целом оказывается, что такие молекулы, как пропионат, способны критическим образом разрушать «взаимопонимание» между нормальной микрофлорой кишечника и иммунной системой хозяина, между иммунной и нервной системами, и даже «взаимопонимание» внутри клетки: между митохондриями, хромосомами и наружными рецепторами.
Вероятно, удастся выделить болезни коммуникаций биологической периферии (марковского ограждения индивидуальности по Карлу Фристону) с психологическим ядром индивидуальности, то есть, например, правильного «общения» микрофлоры с мозгом человека напрямую или через важнейшие физиологические системы макроорганизма: пищеварительную, иммунную, энтеральную и центральную нервные системы. Нарушенные коммуникации «периферии с ядром» называют причиной ряда серьезных заболеваний головного мозга, включая депрессию, болезнь Альцгеймера и расстройства аутистического спектра. Можно предположить, что при некоторых из подобных заболеваний в силу коммуникационных деформаций происходит защитное нефатальное «отключение» части «ядерной» индивидуальности по типу незавершенного апоптоза, приводящее к частичному расщеплению индивидуальности.
Как можно было увидеть, эти коммуникации с биологической периферией индивидуальности многоканальные: они включают как сигнальные молекулы воспаления типа цитокинов, нейротрансмиттеры, гормоны или нервные импульсы, передаваемые через разделенные магистрали соматической, симпатической и парасимпатической нервных систем. Отдельным сверхглобальным каналом коммуникаций могут оказаться малые некодирующие РНК (БОН: глава Х). Как и в системе социальных коммуникаций, отдельные каналы общения не являются полностью изолированными друг от друга; существует множество точек переключения между ними на самых разных уровнях, своего рода «синапсов» из гипотезы безмасштабной когнитивности Майкла Левина. В итоге «психологическое ядро» должно «слышать» в себе гармонизированное отражение окружающей среды (ее «внутреннюю модель», по принципу свободной энергии Карла Фристона), что поддерживает и саму целостность ядра. Некомпенсируемые нарушения коммуникаций по сути исподволь разваливают эту целостность.
Если друг оказался вдруг
Своеобразным реостатом – регулятором «напряжения тока» коммуникаций – служит проницаемость желудочно-кишечного тракта. Она может варьировать от способности останавливать перемещение отдельных молекул во внутреннюю среду организма допредоставления возможности проникновения в эту среду целых микроорганизмов. Основными рабочими элементами этого регуляторного механизма являются слизь, вырабатываемая специальными клетками в стенке кишечника, и плотные межклеточные контакты между наружными клетками кишечного эпителия. Слизь двухслойна: тонкий внутренний слой очень прочно прикреплен к эпителию и обычно непроницаем для микроорганизмов, а толстый наружный слой более свободный, он непрерывно отслаивается в просвет кишечника вслед за проходящим кишечным содержимым вместе с массой накапливающихся в этом слое микробов. Именно этот слой служит местом постоянного обитания большинства кишечных микробов, так как содержит в большом количестве муцины, сахаросодержащие белки.
На плотные межклеточные контакты кишечного эпителия оказывает влияние множество факторов, но, пожалуй, единственным полностью физиологичным и наиболее эффективным регулятором у человека является система белка зонулина – собственного аналога холерного энтеротоксина zonula occludens (Zot), экстремально повышающим кишечную проницаемость (БОН: глава XIV). Именно исследования феномена повышенной проницаемости кишечника при холере позволили Алессио Фазано в 2000 году обнаружить как сам белок зонулин, так и зависимость его выработки в кишечной стенке от определенного рода контактов с бактериями и от концентраций некоторых веществ в просвете кишечника. Здесь речь идет в первую очередь о глиадине – основном белке в составе глютена (клейковины, белкового комплекса в составе злаков). Глиадин обнаруживается в высокой концентрации, например в мучных изделиях, и служит причиной их специфической непереносимости – целиакии. Но, как доказывает Фазано, у абсолютно всех людей глиадин в той или иной степени повышает проницаемость стенки кишечника (Drago S., Fasano A. et al., 2006; Fasano A., 2011).
Попадание бактерий во внутренний слой слизи активирует иммунные клетки, находящиеся в кишечной стенке. Иммунные клетки особенно остро реагируют на липополисахарид (ЛПС) – уникальный полимер из оболочки грамотрицательных бактерий, при контакте с которым во многих случаях иммунным клеткам даже не требуются дополнительные подтверждения недружественного бактериального вторжения, чтобы инициировать воспалительную реакцию.