4 с поверхности заболоченных территорий, пресноводных водоемов, океанической поверхности, а также метан, образующийся в колониях термитов и выделяемый при сжигании огромных объемов биомассы в результате пожаров.
Здесь необходимо небольшое отступление. Определение суммарного количества метана, поступающего в атмосферу от каждого из источников, – несомненно, важная, но вряд ли решаемая инструментальными средствами задача. Поток СН4, например, с поверхности заболоченных территорий, существенно зависит от температуры поверхности, типа болота (торфяного, сфагнового и др.), характера растительности и ее плотности, наличия или отсутствия воды на поверхности и других факторов. Поскольку заболоченные территории встречаются довольно часто (исключая полярные области), и каждой местности присущи свой климатический режим и своя растительность, величины потока СН4 с разных увлажненных территорий будут заметно различаться, а организация регулярных измерений потока СН4 в столь большом количестве мест практически неосуществима. Да и смешно представить каждую корову (лошадь, козу и пр.) с индивидуальным датчиком, замеры которого регулярно собирались бы и аккуратно архивировались. А поэтому мощность каждого источника метана определяется с помощью решения обратной задачи: подбирается значение, которое, будучи подставленным в модель, обеспечивало бы максимальное соответствие расчетных концентраций СН4 измеренным. Естественно, получаемые оценки зависят от класса и особенностей используемой модели и заметно различаются у разных авторов. Обзор таких экспертных оценок и комментарии к ним приведены в Scientific Assessment of Ozone Depletion, 1994[15]. Далее мы воспользуемся именно этим источником. Давность указанной публикации не должна смущать читателя. Несомненно, за почти 20 лет, прошедших с момента ее выхода в свет, приведенные оценки как-то изменились, однако с абсолютной уверенностью можно утверждать, что они не вышли за рамки разброса приведенных в этом обзоре значений. В такой ситуации мы не ставим перед собой задачу сообщить читателю «последние известия с метаноносных полей» и призываем рассматривать приведенные ниже числа лишь для получения представления о порядке величины отдельных источников и соотношении между ними. Однако вернемся к обсуждению существующих источников метана.
Среди естественных источников метана наиболее интенсивен поток СН4 с поверхности заболоченных территорий. Его величина оценивается экспертами в 110 Мт/год (1 Мт = 106 т) с разбросом значений от 55 до 150 Мт/год, причем более половины (около 60 Мт/год) приходится на тропики, а на северные широты почти все оставшееся – 40 Мт/год. На порядок меньше поток с поверхности океана – 10 Мт/год и с пресноводных поверхностей – 5 Мт/год. Ежегодная производительность термитников оценивается в 20 Мт метана. Еще 40 Мт/год поступает в атмосферу в результате сгорания биомассы при пожарах, в большинстве своем происходящих в тропической зоне. Таким образом, ежегодно благодаря естественным источникам в атмосферу попадает около 200 Мт СН4 (с разбросом оценок от 101 до 355 Мт/год) (рис. 19).
Рис. 19. Мировая эмиссия метана (Мт/год) от естественных (а) и антропогенных (б) источников
В число антропогенных источников входят потоки, попадающие в атмосферу при добыче ископаемого топлива, с мусорных свалок и при последующем сжигании бытовых отходов, очистке сточных вод, расширении сельскохозяйственных угодий (в том числе рисовых плантаций), при разведении крупного рогатого скота.
Совместные усилия угле-, газо– и нефтедобывающих предприятий во всем мире увеличивают эмиссию метана в атмосферу на 100 Мт/год (в природном газе на его долю приходится 77–99 %, в попутных нефтяных – 31–90 %, в рудничном – 34–40 %). Из этих 100 Мт/год промышленной эмиссии примерно 47 дает добыча и сжигание угля, а 37 и 17 Мт/год соответственно – утечка из скважин и при транспортировке газа и нефти.
Подсчитано, что крупный рогатый скот продуцирует 80 Мт СН4 в год. (В 2000 г. насчитывалось чуть больше 1 млрд голов, из них 314 млн – в Индии, 150 – в Бразилии, 130 – в Китае и около 100 млн – в США.)
Ежегодный поток СН4 в атмосферу с рисовых плантаций оценивается в 60 Мт, еще около 30 Мт СН4 в год попадает в атмосферу при других способах землепользования; при накоплении и переработке мусора – 57 Мт в год. Географическое распределение этих потоков напрямую зависит от экономического развития страны, численности и плотности населения, отчасти от национальных традиций. Примерно вдвое меньше, 25 Мт СН4 в год, обеспечивает очистка сточных вод.
В итоге из антропогенных источников в атмосферу попадает около 360 Мт/год (от 259 до 537) СН4 при общем его объеме в 560 Мт/год (от 360 до 892).
Следовательно, примерно 2/3 глобальной эмиссии метана обусловлено деятельностью человека, хотя деление источников на антропогенные и естественные несколько условно – осушаются естественные болота, метан присутствует в продуктах жизнедеятельности не только домашних, но и диких травоядных животных.
Понятно, что основные источники метана размещаются в Северном полушарии, где находится подавляющее большинство экономически развитых государств. К тому же площадь суши, на которой в основном располагаются источники СН4, здесь значительно больше, чем в Южном полушарии. А что же Россия? Сколь велик наш вклад в глобальную эмиссию метана?
В силу своего географического положения наша страна не является родиной термитов и рис – далеко не главный среди производимых в России зерновых. Поэтому российский вклад в эмиссию СН4 складывается в основном из потоков метана с поверхности переувлажненных территорий (включая болота, открытые водоемы, тундру и т. д.), его утечек, сопутствующих добыче ископаемого топлива, а также метана, выделяемого в результате жизнедеятельности крупного рогатого скота и при утилизации мусора.
По оценкам, гниение и сжигание российского мусора увеличивает ежегодный поток метана примерно на 2,5 Мт.
В 1990-х годах в России и странах СНГ резко сократилось количество крупного рогатого скота, и к 2000 г. в России насчитывалось лишь 27 млн голов (в 1991 г. в СССР – 57 млн). Как следствие, в данный период уменьшился и выброс СН4, обусловленный этим источником: в 2000 г. он оценивался в 1,8 Мт/год. Из-за экономического спада 1990-х закрылись шахты в России, на Украине, в Казахстане, значительно сократилась добыча угля. Существующая на этот счет статистика весьма противоречива, что, конечно, осложнило расчеты, поэтому экспертные оценки имеют большой разброс – от 2,5 до 5 Мт СН4 в год.
Как известно, Россия обладает огромными запасами природного газа, добыча которого – приоритетная отрасль ее экономики. Вопрос о необходимости оценки объема утечки газа неоднократно поднимался российскими и международными природоохранными организациями (по расчетам 1990-х годов, в результате утечки в атмосферу может попадать от 1,42 до 17±13 Мт СН4 в год).
По нашей оценке, эмиссия СН4 от российских переувлажненных территорий, расположенных в поясе 30–60° с. ш., составляет около 21 Мт/год. Общие же выбросы СН4 с территории России можно оценить в 40–45 Мт/год (рис. 20).
Рис. 20. Российские источники выбросов метана (Мт/год) в атмосферу: 1 – болота, тундра, открытые водоемы; 2 – газо– и нефтедобыча; 3 – угледобыча; 4 – мусор; 5 – крупный рогатый скот
Ввиду того, что молекула СН4 живет в атмосфере 8– 12 лет, а на перемещение воздушных масс из одного полушария в другое достаточно нескольких месяцев, содержание метана в воздухе почти одинаково в разных уголках земного шара.
В частности, средняя концентрация СН4 в Южном полушарии всего на 6 % ниже, чем в Северном, где, как уже отмечалось, расположены его основные источники. В связи с относительной химической пассивностью метана его содержание в атмосфере не подвержено заметным сезонным изменениям, которые не превышают нескольких процентов, причем самые низкие концентрации СН4 приходятся на конец лета, а наибольшие – на зиму и весну. Исключение составляют северные высокие широты, там наблюдается резкое увеличение концентрации метана к осени, связанное с освобождением ото льда болотистых почв.
Анализ образцов из ледовых кернов, отобранных в Антарктиде и Гренландии, позволил проследить ход изменения концентрации СН4 в атмосфере. Во время последнего ледникового максимума (18–20 тыс. лет назад) она составляла в нижней тропосфере 350 ppb (молекул метана на миллиард молекул воздуха), к 1850 г. возросла до 820 ppb, в 1950 г. – уже до 1180 ppb, в 1990 г. – 1694 ppb, в 2000 г. – 1752 ppb и в 2010 г. – около 1850 ppb (рис. 21).
Налицо беспрецедентно быстрый рост концентрации атмосферного метана за последние 60 лет – на 56,8 %.
Рис. 21. Среднегодовое по земному шару содержание метана в приземном воздухе
Как изменится содержание метана в атмосфере в будущем, ближайшем и отдаленном? Вопрос достаточно трудный, ответ на него зависит от множества объективных и субъективных факторов, главный из которых – наши недостаточные знания, в частности о механизме обмена метана между геосферами (недрами Земли, океаном, атмосферой). Например, до сих пор не объяснено наблюдавшееся в начале XX в. резкое, но непродолжительное замедление скорости роста его содержания в атмосфере. Другой важный фактор неопределенности будущего метана – стратегия национальных и мировой экономик, технических и технологических новаций. Так, англичане разработали и успешно внедряют методику консервирования закрытых шахт, надежно препятствующую проникновению метана в атмосферу. Голландцы начинают использовать технологии очистки коровников, предотвращающие утечку метана.