и затем ввести в это расходящееся выражение характерное время, ограничивающее скорость роста:
Этот прием может показаться произвольным шагом. Однако здесь мы обратились к методам, которые развиты для регуляризации расходимостей, появившихся в сингулярности роста. Полученное выражение очень хорошо описывает сингулярность глобального демографического перехода, поэтому, интегрируя (3), получим выражение для описания самого перехода и имеющего степенную асимптотику:
При обращении к последним данным демографии (см. рис. 18) были получены уточненные значения постоянных, что учтено во всех вычислениях:
Из-за введения конечного τ полюс в Т1 сдвигается к новому значению Т1 = 1995 г., которое и принято при расчетах, описывающих как демографический переход, так и рост населения мира за пределы Т1 в выражении (4) (см. табл. 1).
В недалеком прошлом выражение (4) асимптотически непосредственно переходит в автомодельный гиперболический рост (1). Однако применительно к очень далекому прошлому скорость роста должна быть ограничена снизу. Этого предположения достаточно для того, чтобы приписать далекому прошлому линейный рост, при котором в первом приближении скорость роста не может быть меньше появления одного гоминида за время τ, пока численность населения не достигает ~100 000. В популяционной генетике число K характерно для численности стабильного вида, биологически подобного человеку. При достижении этого уровня в численности вида ~ 1,6 млн лет назад начинается эпоха квадратичного роста, которая становится доминирующей до момента демографического перехода.
Параметр K определяет не только масштаб численности человечества в начальную эпоху роста, но и дает оценку численности когерентной группы людей или племени как самодостаточной единицы населения. Как большой параметр, постоянная K определяет все соотношения между населением и длительностью процессов роста, а значительная величина константы K приводит к высокой эффективности асимптотических решений. В результате скорость роста населения Земли определяется нелинейным дифференциальным уравнением:
где время τ = T/τ выражено в единицах времени τ и в решениях уравнения (6) отсчитывается от момента прохождения через демографический переход. Характерное время τ одинаково для фазовых переходов в прошлом и настоящем.
Формула роста (6) выражает природу коллективного нелинейного взаимодействия, которое ответственно за рост человечества в эпоху его взрывного развития между двумя сингулярностями. В этом уравнении Т1 и N для усредненных переменных и скорость роста приравнена к развитию, которое равно квадрату численности населения мира, как выражение меры системной сложности населения планеты.
Полное решение должно описывать рост человечества в течение трех эпох. Первая эпоха А – антропогенеза начинается с линейного роста с указанной выше минимальной скоростью. Когда население достигает величины порядка 100 000, наступает эпоха В – взрывного роста со скоростью роста, пропорциональной квадрату населения Земли, и с этого времени человек заселяет всю планету.
Когда скорость квадратичного роста достигла своего предела при удвоении за характерное время τ, наступил кризис мирового демографического роста и переход в эпоху С – стабилизации населения мира. Таким образом, на основании (3) максимальная абсолютная скорость глобального роста во время демографического перехода равна:
при относительном росте:
достигнутом в 1995 г., что согласуется с данными ООН, но дает несколько меньшее значение для абсолютной скорости роста при сравнении с табл. 1 (рис. 18).
Население Земли в этот критический момент перехода Т1 = 1995 г. соответственно равно:
На этой основе легко определить предел N∞, в два раза больший, чем N1, к которому в эпоху С асимптотически стремится население Земли:
В рамках сделанных предположений это число представляет верхнюю оценку населения Земли в предвидимом будущем. Таким образом, глобальное взаимодействие приводит к ускорению и синхронизации процессов и на заключительной стадии глобального демографического перехода – к сужению перехода и тем самым к снижению предела для населения нашей планеты. Этот результат находится в согласии с интуитивными экстраполяциями демографов. Рассмотрение N (Т) как аналитической функции указывает на асимптотическое поведение при T → ∞, когда N → N∞, в предположении отсутствия нулей и полюсов в обозримом будущем.
Начальный линейный рост дает оценку времени для эпохи антропогенеза и критической сингулярности в предыстории человечества, которая случилась:
если использовать известное значение для N1 и то же значение τ = 45 лет лет для сингулярности в далеком прошлом и в настоящем. Несмотря на сделанные упрощения, данная оценка вполне согласуется с оценками времени, предложенными для Т0 в антропологии.
Представляет интерес определить полное число людей, живших на Земле. Если переставить переменные в (6) и проинтегрировать:
то получим число людей, живших от Т0 до нашего времени Т1. В оценках других авторов длительность поколения принята равной 20 годам, что ведет к оценке P0,1 = 106 млрд [10]. Поэтому необходимо введение в (12) множителя 45 / 20 = 2,25:
Таким образом, в течение каждого из lnK = 11,00 выделенных периодов жило по 2,25K2 = 8 млрд людей. Это число является инвариантом для числа людей, живших в экспоненциально сокращающихся циклах.
Эти циклы можно получить, обобщая решение (6) в область комплексных переменных или суммируя экспоненциально сокращающиеся периоды, причем нулевой цикл θ = 0 отвечает линейному росту в течение начальной сингулярности:
где θ – номер цикла, определить длительность развития при К>>1:
и сравнить ее с (11), где длительность равна:
В (15) рост суммируется по гиперболической траектории, во втором случае – по (4):
Демографические циклы определяют периодичность развития всего человечества за 4–5 млн лет, включая проходящий по гиперболическому закону рост от конца антропогенеза до наших дней. Наличие выделенных антропологами и историками демографических циклов, как эпох развития человечества, указывает на глобальную устойчивость системы при ее развитии по предельной траектории гиперболического роста.
Для дальнейшего перейдем к переменной n = N/K, когда население Земли измеряется в единицах K:
Тогда уравнения для роста становятся симметричными, и это видно по сопряжению переменных n и t. Смена зависимой переменной в (16a) и (16d) происходит при прохождении перехода, когда n становится независимой переменной вместо времени t, что выражено в уравнении роста (3).
Из (15) следует, что после каждого цикла до демографического перехода остается половина времени длительности цикла:
что вполне подтверждается данными истории и антропологии (см. табл. 2).
Рост населения можно иллюстрировать геометрическим построением функции тангенса:
где угол ∆φ = τ отображает течение времени, а приращение населения ∆N = 1 и N0 = 1 (см. рис. 19).
Линейный рост будет продолжаться до φA,B = Kτ = 1 и NB = tanl в точке В на касательной АС. Дальнейший рост N = K (π/2 – φ)–1 будет проходить по гиперболе, при которой время асимптотически стремится к π/2, а население достигнет значения NС = pK2/2. Когда система приближается к моменту особенности, то от уравнения (16а) следует переходить к уравнению (16d), чтобы описать рост при прохождении особенности в течение эпохи С.
Построение на рис. 19 показывает, что после перехода от линейного к гиперболическому росту на эпоху В остается в два раза меньше времени, чем в начальную эпоху А. Для всей эпохи В время от T0 до T1 при K = 7 разделено на 11 интервалов. Поскольку π/2 ≈ 11/7, то NC = K2 =49 в момент обострения. Однако даже при таком малом значении K, когда ln 7 = 1,95 дает хорошую оценку l + ln K ≈ 3 для числа демографических циклов.
Таким образом, нулевой цикл А антропогенеза продолжался 7 единиц времени, первый цикл длился 3 и последний – 1 единицу времени. Это построение показывает, как дискретность времени и населения приводит к появлению периодичности роста, выраженной в демографических циклах.
Линейный рост описывает развитие системы от начальной сингулярности роста при N0 = 1 и положительных значений N. Далее следует рост по гиперболе и в конце – cингулярность демографического взрыва. Построение, когда переменные n и t при прохождении перехода меняются местами, мы оставляем читателю.
На рис. 20 показаны функции, описывающие рост системы при K = 1, которые появляются при построении решения, начинающегося с сингулярности в эпоху А, переходящего затем в эпоху В гиперболического роста и завершающегося эпохой С. Асимптотический переход решений, описывающий рост в начале развития и на его конечном участке, получим, обратившись к рядам для функции cot–1(t/K) и cot(t/K):
Эти функции пересекаются в точке А, посередине роста при логарифмическом представлении между временем Т0 и Т1, соответствующей наступлению неолита:
под углом 2/(3 K) и практически гладко при