Парнокопытные киты, четырехкрылые динозавры, бегающие черви... — страница 18 из 44

ы вряд ли узнаем, поскольку целестиновый скелет растворяется, едва только акантария умирает, и в ископаемом виде не сохраняется.

Всего же организмы используют более 60 различных видов минералов.

В твердой памяти

У многих организмов состав скелета — это увековеченная в камне память о времени его появления. Суждено было родиться, если применять это понятие к целым группам организмов, а не к индивидам, в холодную эру, останешься на все время своего существования с арагонитовым или магнезиальнокальцитовым скелетом. А если условный день рождения совпал с теплой эрой, быть скелету кальци-товым. «Дети» холодной эры — это, например, улитки, ше-стилучевые кораллы, живущие в трубочках кольчатые черви — сабеллиды (арагонит) и иглокожие (магнезиальный кальцит); а вот, скажем, ракообразные, мшанки и брахио-поды с простой кальцитовой раковиной начали свое существование в теплые времена.

Кембрийский рифостроящий организм Chabakovia (Rhizaria) со скелетом из магнезиального кальцита; Южный Урал, Оренбургская обл.; 520 миллионов лет. Палеонтологический институт РАН


Дело в том, что в такие времена содержание в атмосфере углекислого газа в два-три и более раза превышало нынешнее. А поскольку воздушная оболочка Земли тесно взаимодействует с жидкой, то и океан пополнялся углекислым газом. Газ, реагируя с водой, образовывал нестойкую угольную кислоту, которая быстро распадалась на ионы водорода и бикарбоната, а последний — на ионы карбоната и водорода [СO22O <-> Н2СO3<-> H++ HCO3-<-> 2Н++ С032-]. Избыток ионов водорода подкисливал морскую воду. Если, скажем, их содержание в океане было в два раза выше нынешнего, то водная среда из нейтрального состояния переходила в кислое и арагонитовые, а также магнезиально кальцитовые скелеты, если они были плохо изолированы от водной среды органическими оболочками, начинали растворяться еще при жизни своих владельцев.

Раковина современной улитки Crysomallon squamiferum (диаметр 3,5 сантиметра), обитающей среди черных курильщиков, построена из железа и серы; Индийский океан. Шведский музей естественной истории, Стокгольм (предоставлено Андерсом Вареном)


Кальцитовый панцирь кембрийского членистоногого трилобита Aldonaia ornata (длина 3 сантиметра); река Лена, Республика Саха (Якутия); 515 миллионов лет. Палеонтологический институт РАН


Раковины палеогеновых улиток из арагонита (высота до 50 сантиметров); Пиренеи, Арагон, Испания; 65–30 миллионов лет. Музей Сантьяго Лафарга, Барбастро


Такие эпохи массового растворения, связанные с наступлением теплой эры, случались примерно 500 и 200 миллионов лет назад. Коснулись эти события в основном водорослей, губок и кораллов, у которых минеральные скелеты не были достаточно изолированы от внешней среды. Кто-то приспособился к новым условиям, сменив скелет на более устойчивый — кальцитовый. Кто-то вовсе отказался от этой тяжелой ноши. Кто-то и совсем вымер. Нечто подобное происходит с современными рифами, строители которых — шестилучевые кораллы, зеленые и красные водоросли, пользуясь благами холодной эпохи, обходились «быстрорастворимыми» скелетами. Нынешний, пока незначительный, подъем уровня углекислого газа уже привел к сокращению площади рифостроения. По прогнозам некоторых биохимиков, если эта тенденция сохранится, то не пройдет и ста лет, как рифы в их современном виде исчезнут. Так, по крайней мере, рассчитали экологи Джон Гинотт из Института охраны моря в Сиэтле и Роберт Буддмейер из Канзасской геологической службы.

Другим важным источником изменений состава Мирового океана являются срединно-океанические хребты. Чем больше их протяженность, а этот показатель зависит от числа континентов, тем больше выделяется базальтовой лавы. Взаимодействуя с морской водой, свежий базальт поглощает ионы магния, и в самой воде остается больше ионов кальция. В итоге, как полагают геолог-тектонист Лоуренс Харди и палеонтолог Джордж Стенли из Университета имени Джона Хопкинса в Балтиморе, преимущество получают организмы с кальцитовым скелетом.

Оба этих явления — увеличение длины срединно-океа-нических хребтов и повышение уровня углекислого газа — взаимосвязаны. Рост подводных гор, сокращающий емкость океанических впадин, выталкивает излишки воды на окраины континентов. Этот процесс, кстати, в значительно большей степени влияет на рост уровня Мирового океана, чем пресловутое таяние ледников. Площадь суши сокращается, а вместе с ней и выходы горных пород с высоким содержанием кремнезема, на выветривание которых расходуется углекислый газ. В результате он накапливается в атмосфере все в больших объемах и растворяется в океане…

Когда внутри кисло

Сидячий и малоподвижный образ жизни не требует больших затрат энергии. Об этом каждый, наверное, и сам догадывается: при малоподвижном образе жизни мы накапливаем жир. А вот быстро плавающим и бегающим животным, особенно хищникам или тем, кому в сотые доли секунды нужно собраться, чтобы нанести сокрушительный удар жертве, требуется энергии немало. Рыба-меч, например, нападает на косяки мелкой рыбы на скорости 90 километров в час; гремучая змея делает смертельный выпад за четыре сотых секунды; рак-богомол разбивает или прокалывает защиту жертвы за две стотысячных доли секунды.

Что общего у рыб, змей и раков? Фосфатный скелет. У раков-богомолов фосфат в основном сосредоточен в ударном механизме — ногочелюсти. И это не случайно. При сокращениях поперечно-полосатых мышц, позволяющих развивать всему телу или отдельным органам запредельные скорости, в организме вырабатывается молочная кислота. Кислотность внутренней среды возрастает в че-тыре-пять раз, и скелет легко бы растворился, будь он известковым. Ихтиологи Джон Рубен из Университета штата Орегон и Алберт Беннетт из Калифорнийского университета (Ирвайн) выяснили это на опыте: вживляли в мышцы форели известковые и фосфатные пластинки. Известковые пластинки в отличие от фосфатных растворялись, стоило рыбе немного поплавать.

Если же обратиться к ископаемой летописи, то окажется, что предки всех позвоночных были активно плавающими хищниками с фосфатными зубами, а позднее и другими деталями скелета. Их образу жизни мы — потомки этих первых хищников — и обязаны своим слаборастворимым, прочным и в то же время удивительно гибким скелетом. А вот, скажем, ближайшие скелетные родственники позвоночных — иглокожие — предпочли в те же времена облегчить себе жизнь, соорудив скелет из магнезиальнокальцитовых пластинок. С тех пор и ползают неспешно по дну, не освоив ни суши, ни даже слегка опресненных водоемов.

Большая охота

И первые позвоночные, и иглокожие, и практически все другие скелетные организмы (моллюски, брахиоподы, членистоногие, кораллы, губки) обрели минеральный скелет по геологическим меркам единовременно — за какие-то 35 миллионов лет. Можно было бы связать всеобщую ске-летизацию с очередным изменением состава океанических вод, но подобные события происходили и до, и после, не особенно влияя на количество скелетных организмов. Да и невозможно объяснить какими-либо внешними причинами единовременное появление скелетов и наружных, и внутренних, и известковых, и фосфатных, а если добавить губок — то и кремневых.

Но в природе ничего случайно не происходит. До сих пор мы обращали внимание на состав скелета. А в чем его предназначение? Самое простое объяснение: изначально скелет был свалкой лишних ионов, от которых сложно было совсем избавиться, удалив во внешнюю среду. Да и про запас их можно было вполне оставить: дополнительные ионы кальция и фосфата время от времени требуются для различных нужд организма. К тому же с помощью скелетных отложений можно избавиться от неприятных инородных тел — в результате такого процесса в раковинах дву-створок появляются жемчужины — слоистые оболочки из арагонитовых пластинок.

Конечно, не в последнюю очередь скелет — это опорная конструкция, на которой крепятся мышцы. Не будь такой внутренней или внешней опоры, многие организмы (позвоночные, членистоногие, улитки, морские ежи, которые ходят на иглах) не смогли бы двинуться с места. Опора нужна и тем из них, кто всю жизнь, наоборот, сидит на одном месте: благодаря скелету кораллы выдерживают шторма, а губки приподнимаются над поверхностью морского дна, чтобы перепад давления в водяном столбе вызвал восходящие течения в организме, необходимые для их питания. «А еще я им ем», — можно было бы перефразировать высказывание одного из анекдотических персонажей. Ведь зубы и челюсти позвоночных, клешни и прочие «ногоконечности» ракообразных, радула хитонов и других моллюсков, ажурный, но очень прочный жевательный аппарат морских ежей (аристотелев фонарь) — это тоже скелет. Без таких важных скелетных частей ротового аппарата пищу не добыть и не измельчить.

Скелет помогает видеть, хотя и не всем. Магнезиаль-нокальцитовые линзы в сложных глазах давно вымерших членистоногих — трилобитов — и современных морских звезд и змеехвосток благодаря высокой чистоте и форме уменьшают искажения и рассеивание. У рыб и некоторых бесчелюстных позвоночных часть скелета — жаберные дуги — это еще и элементы дыхательной системы. Костные выросты черепа — рога и воротники — динозавры, вероятно, использовали для демонстрации во время брачных игр, так же как ныне используют бивни хоботные. Костные пластины, протянувшиеся вдоль хребта стегозавра, возможно, служили для отвода тепла, охлаждая кровь этих гигантов. Нанокристаллы магнетита позволяют тунцам, морским черепахам, китам, голубям и пчелам ориентироваться в пространстве, используя естественную карту магнитного поля Земли. А отолиты — известковые микростяжения, расположенные в органах равновесия у рыб, — помогают им определить, где верх и низ в водной тоще.

И конечно, скелет — это надежная защита. Не случайно выражения «спрятаться в раковину» или «вжаться в панцирь» означают «найти укрытие». Любая часть скелета, скажем пластинка хитона или чешуя рыбы, — это многослойный, то есть многоуровневый, элемент защиты. Благодаря различному взаимному расположению, а иногда и минералогическому составу микрокристаллов в такой пластинке, как показали исследования биохимиков Кристин Ортиз и Мэри Бойс из Массачусетского технологического института, образуются микрослои, одни из которых устойчивы к сдавливанию, другие — к скручиванию, третьи — на излом. Самый внешний слой обычно еще противостоит растворению. Каждый отдельный микрокристалл одет в органическую оболочку, а расположены микрокристаллы спиральными столбиками. И все это усиливает скелет. Но и сам микрокристалл — это не единое целое, а конструкция из мириад наноразмерных кристаллитов. Такие наногранулы тоже имеют свои органические оболочки, которые позволяют им вращаться или раздвигаться. Благодаря высокой пластичности кости и раковины и оказываются такими прочными: сила нажима или удара гасится органическими обо