Пациент Разумный: Ловушки «врачебной» диагностики, о которых должен знать каждый — страница 7 из 12

Кровь – удивительное творение природы. Можно без преувеличения сказать, что она является источником жизни. Ведь именно через кровь мы получаем кислород и питательные вещества, именно с кровью уносятся из клеток «отходы производства». Любой недуг организма обязательно находит свое отражение в крови. На этом построен целый ряд диагностических методик. И шарлатанских – тоже.

Кровь была одной из первых жидкостей, которую любознательные медики поместили под только что изобретенный микроскоп. С тех пор прошло более 300 лет, микроскопы стали намного совершеннее, но глаза врачей по-прежнему смотрят на кровь в окуляры, выискивая признаки патологии.

Жидкая ткань

Сначала – очень кратко – поговорим о строении крови. Эти знания определенно пригодятся в следующих разделах главы.

Итак, кровь относится к соединительным тканям. Да, как бы нелепо это ни звучало на первый взгляд, она является ближайшей родственницей послеоперационного рубца и двоюродной сестрой большеберцовой кости. Основной признак, характерный для таких тканей, – малое количество клеток и высокое содержание «наполнителя», который называется межуточным веществом.

Клетки крови называются форменными элементами и делятся на три большие группы[53].

Красные кровяные клетки (эритроциты). Самые многочисленные представители форменных элементов. Выглядят как двояковогнутый диск диаметром 6–9 мкм и толщиной от 1 (в центре) до 2,2 мкм (по краям). Служат переносчиками кислорода и углекислого газа, для чего содержат гемоглобин. В одном литре крови содержится примерно 4–5×1012 эритроцитов.

Белые кровяные клетки (лейкоциты). Формы и функции у них разнообразные, но в целом они обеспечивают защиту нашего организма от внешних и внутренних напастей (иммунитет). Размер – от 7–8 мкм (лимфоциты) до 21 мкм в диаметре (макрофаги). Некоторые лейкоциты по форме напоминают амеб и способны выходить за пределы кровяного русла. А лимфоциты похожи скорее на морскую мину, утыканную шипами рецепторов. В одном литре крови содержится примерно 6–8 × 109 лейкоцитов.

Кровяные пластинки (тромбоциты). Это «осколки» гигантских клеток костного мозга, обеспечивающие свертывание крови. Форма их может быть разной, размер – от 2 до 5 мкм, то есть в норме они меньше любого другого форменного элемента. Количество – 150–400×109 на литр.

Жидкая часть крови называется плазмой, на ее долю приходится примерно 55–60 процентов объема. В состав плазмы входят самые разнообразные органические и неорганические вещества и соединения – от ионов натрия и хлора до витаминов и гормонов. Из плазмы крови образуются все остальные жидкости организма.

На стекле

Тониус Филипс ван Левенгук, более известный как Антони ван Левенгук, определенно получил бы несколько Нобелевских премий, живи он в наше время. Но в конце XVII века этой награды не было, поэтому Левенгуку приходится довольствоваться всемирным признанием как конструктора микроскопов и славой основателя научной микроскопии.

Добившись в своих приборах 275-кратного увеличения, а по некоторым данным, и 500-кратного[54], он сделал множество открытий. В том числе первым описал эритроциты.

Современные последователи Левенгука довели его детище до совершенства. Оптические микроскопы способны давать увеличение до нескольких тысяч раз. И они позволили решить проблему, с которой в XVII веке справиться было невозможно: исследователям удалось рассмотреть прозрачные биологические объекты, в том числе клетки нашего организма.

Другой нидерландец, о котором мы уже говорили в первой главе, физик Фриц Цернике, в 1930-х годах заметил, что ускорение прохождения света по прямой делает изображение изучаемой модели более детальным, выделяя отдельные элементы на светлом фоне. Для создания интерференции в образце Цернике разработал систему колец, которые располагались как в объективе, так и в конденсаторе микроскопа.

Если правильно настроить (юстировать) микроскоп, то волны, которые идут от источника света, будут попадать в глаз с определенным смещением по фазе. И это позволяет значительно улучшить изображение изучаемого объекта.

Метод получил название фазово-контрастной микроскопии и оказался настолько прогрессивным и перспективным для науки, что в 1953 году Цернике была присуждена Нобелевская премия по физике.

Почему это открытие оценили так высоко? Дело в том, что раньше для изучения под микроскопом приходилось обрабатывать ткани и микроорганизмы различными реактивами – фиксаторами и красителями. Живые клетки при таком раскладе посмотреть не получалось: химикаты просто убивали их. Изобретение Цернике положило начало новому направлению в науке – прижизненному микроскопированию.

В XXI веке биологические и медицинские микроскопы стали цифровыми, способными работать в разных режимах – как в фазовом контрасте, так и в темном поле (изображение формируется светом, дифрагированным на объекте, и в результате тот выглядит очень светлым на темном фоне), а также в поляризованном свете, который нередко позволяет выявлять структуру объектов, лежащую за пределами обычного оптического разрешения.

Казалось бы, медикам нужно радоваться: в их руки попал мощнейший инструмент изучения тайн и загадок человеческого организма. Но этот высокотехнологичный метод заинтересовал шарлатанов и мошенников от медицины, которые посчитали фазово-контрастное и темнопольное микроскопирование очень удачным способом выуживания энных сумм денег у доверчивых граждан.

Альтернативная биология

В основе каждой псевдодиагностической методики обязательно лежит какая-нибудь ошибочная гипотеза, опровергнутое учение или явление, существование которого так и не было доказано. В случае с «гаданием по крови» все гораздо интереснее: здесь речь идет ни много ни мало об альтернативном взгляде на происхождение и развитие жизни на Земле.

На рубеже XIX–XX веков шла активная борьба между двумя парадигмами в микробиологии. Первая из них – так называемый мономорфизм. Согласно ей, любой микроорганизм происходит от точно такого же и сам дает жизнь себе подобным. При этом форма, размер и количество потомков остаются приблизительно в одних и тех же пределах. Этой точки зрения придерживались Луи Пастер, Рудольф Вирхов и Роберт Кох. Вторая парадигма – плейоморфизм. Ее сторонники считали, что все многообразие микробов – это лишь последовательные стадии развития неких изначальных организмов, причем форма, размер и количество потомков могли сильно варьировать. Самое интересное, что пример таких вариаций был перед глазами – недавно открытый малярийный плазмодий, отличающийся очень замысловатым жизненным циклом с многообразием форм и прочих характеристик.

Одним из самых убежденных плейоморфистов был немецкий зоолог и энтомолог Гюнтер Эндерляйн (1872–1968), который придумал по сути альтернативную микробиологию со своей сложной терминологией, не совпадающей с общепринятой. Согласно его гипотезе, изложенной в основополагающем труде «Циклогенез бактерий» (1925)[55], существуют мельчайшие частицы живого – протиты, коллоидные белки размером 1–10 нм. Пока они небольшие, их существование в другом организме не только оправданно, но и необходимо. Именно поэтому Эндерляйн относил протитов к эндобионтам, то есть «живым в живом».

Протиты могут сливаться в более длинные цепочки и образовывать сначала филиты, затем – симпротиты, хондриты и т. д. В здоровом организме укрупнение останавливается где-то на этом уровне, никакого вреда такие образования не приносят, наоборот, они даже полезны. Но в неблагоприятных условиях, например при «закислении внутренней среды», формируются патогены: сначала ядра бактерий, потом сами бактерии, которые в конце концов превращаются в два вида циклоидов, грибов. Первый – мукор (Mucor racemnosus) – вызывает болезни крови, позвоночника и суставов. Второй – аспергилл (Aspergillus niger) – ответственен за заболевания легких, туберкулез и рак.

Примечательно, что процесс укрупнения, по мнению Эндерляйна, был обратимым. Так, достаточно скорректировать кислотность, сместить ее в щелочную сторону – и патогены начнут распадаться, а болезни, в том числе онкологическая патология, отступят. И это еще не все: если постоянно отслеживать pH внутренней среды, в первую очередь крови, и вовремя реагировать на «закисление» «ощелачиванием», то своих эндобионтов можно удерживать в рамках приличия – где-то на стадии безобидных и даже полезных хондритов.

Эндерляйн окончательно убедился в своей правоте после появления фазово-контрастной микроскопии. Благодаря изобретению Цернике он «увидел» в крови и хондриты, и формирующиеся ядра бактерий, и перерождающиеся из бактерий грибы.

Другой вопрос, что к середине XX века парадигма мономорфизма победила окончательно: накопилась критическая масса научных фактов, которые подтверждали ее истинность. А «увиденные» Эндерляйном образования были не чем иным, как артефактами. Впрочем, как выяснилось чуть позже, на этих самых артефактах можно очень неплохо зарабатывать.

Она живая и шевелится

Итак, псевдодиагностическая методика, зародившаяся в США и вовсю эксплуатирующая ошибочное наследие Эндерляйна в коммерческих целях, называется диагностикой по живой капле крови, тестированием на темнопольном микроскопе, биоцитоникой или гемосканированием. Если захотите поискать информацию в англоязычном Интернете, пригодятся варианты «live blood cell analysis», «live blood cell test» и «hemaview».

На некоторых сайтах утверждается, что автор методики – Курт Грейндж (встречается также вариант Грейнджи), магистр нутрициологии и доктор натуропатии Государственного университета Клейтона, придумавший ее в 1998 году. Но гемосканирование определенно старше: один из подробных разборов его псевдонаучности был сделан еще в 1986 году[56].

У пациента берут каплю крови, потом, не окрашивая и не фиксируя реактивами, наносят на предметное стекло и в течение некоторого времени изучают образец на экране монитора под очень большим увеличением. По результатам исследования ставятся диагнозы и назначается лечение.

Гемосканирование можно считать венцом мошеннической мысли, своеобразным шедевром, высшим пилотажем. И для этого есть как минимум три причины.

Во-первых, используются реально существующее физическое явление (про Нобелевку помните?) и самая настоящая сложная медицинская аппаратура. Действительно дорогостоящая. Диагностический комплекс стоит не менее 3–5 тысяч долларов. Причем точно такую же предлагают солидные поставщики серьезной медицинской техники. Аппаратура имеет все необходимые – подлинные и совершенно заслуженные – сертификаты и свидетельства.

Во-вторых, никаких проблем с лицензированием. Лабораторная диагностика – вполне законный вид медицинской деятельности, а микроскоп, позволяющий осуществлять фазово-контрастное или темнопольное микроскопирование, – вполне законная медицинская диагностическая аппаратура. Мало того, она широко применяется в медицине, то есть существуют сертифицированные и дипломированные специалисты.

В-третьих, под микроскопом действительно можно обнаружить множество признаков тех или иных заболеваний. Например, изменение формы эритроцитов при серповидноклеточной или В12-дефицитной анемии. А еще можно увидеть внутриклеточных паразитов все в тех же эритроцитах: малярийных плазмодиев, бабезий и бартонелл. И даже яйца гельминтов в крови – чисто теоретически и с массой оговорок, но обнаружить все-таки можно.

Так в чем же подвох? А подвох в интерпретации. В том, как объясняют «темнопольщики» те или иные изменения в крови, как называют обнаруженные в крови артефакты, какие диагнозы ставят и чем лечат. В полном соответствии с заветами Эндерляйна, между прочим: кровь не стерильна, а густо населена, наличие патогенов в плазме и эритроцитах означает закисление среды, ну а самые опасные создания – это мукор с аспергиллом.

Разобраться в том, что это обман, сложно даже врачу. Нужна специальная подготовка, опыт работы с образцами крови, сотни просмотренных «стекол» – как крашеных, так и «живых». Как в обычном поле, так и в темном. Правильно говорится: лучше один раз увидеть. И своим глазам человек поверит куда быстрее, чем всем устным увещеваниям. На это и рассчитывают операторы. К микроскопу подсоединен монитор, который отображает все, что видно в мазке. Вот вы лично когда последний раз видели собственные эритроциты? То-то и оно. Интересно ведь. А пока завороженный посетитель любуется клетками родной любимой крови, темнопольный диагност начинает интерпретировать то, что он видит.

Картинки с выставки

Лучше всего пояснять на конкретных примерах. Иллюстрации возьмем из атласа, по которому обучают операторов-новичков. Я раздобыл его на одном из семинаров по гемосканированию, где «под прикрытием» собирал материал для очередной статьи.


Паразиты

Любимый диагноз всех околомедицинских мошенников, и кудесники темнопольных микроскопов не исключение. Диагноз очень удобный: его сложно однозначно подтвердить или опровергнуть в силу особенностей физиологии паразитов и несовершенства традиционных методов их обнаружения. Поэтому разнообразных глистов и личинок псевдодиагносты находят практически у каждого пациента.


Яйца глистов


Действительно, в крови можно обнаружить яйца и подрастающие особи некоторых гельминтов. Например, у шистосом есть период гематогенной диссеминации (проще говоря, распространения по организму с током крови). Их яйца – овальные образования размером 104–203 на 50–85 мкм[57]. Диаметр капилляров в подушечке пальца, из которой берут каплю крови для гемосканирования, – около 5 мкм. Внимание, вопрос: как яйца паразитических червей туда втиснутся? Как проходят эритроциты, диаметр которых около 7,5 мкм, известно: они обладают эластичной мембраной, которая может до определенной степени деформироваться, вытягиваться. После этого красные кровяные клетки способны преодолеть капилляр дружным строем, по одному, друг за другом. И что делать гигантскому, в десять раз больше эритроцита, яйцу или еще более крупной личинке? А ничего. Довольствоваться крупными сосудами. Вот в венозной крови их как раз и можно чисто теоретически обнаружить, если застать нужный момент. Еще в кровоток умеют выходить аскариды, но размер их оплодотворенных яиц – 45–75 на 35–50 мкм[58], а подрастающие и взрослые особи существенно крупнее.

Глистов и личинок псевдодиагносты находят практически у каждого пациента.

Что мы видим на фото на самом деле? Продолговатый артефакт, абсолютно не похожий на яйцо какого-либо из описанных на сегодня гельминтов. Другими словами, мусор, попавший в рассматриваемую каплю крови, – осевший из воздуха, оставшийся на плохо обработанном предметном стекле или упавший с головы оператора. Последнее, кстати, возможно из-за нарушения требований к работе в клинической лаборатории. На фото в Интернете, как и в реальной практике, операторы зачастую не пользуются ни перчатками, ни шапочками, ни масками. Да и помещения для диагностики оставляют желать лучшего в смысле чистоты. Там много чего в воздухе летает.

А как же тогда получаются вот такие картинки из атласа?


Личинка паразита


Элементарно. Здесь действительно изображен круглый червь, хорошо видны и ротовое отверстие, и просвечивающая кишка. Однако его поместили в образец крови позже. Доказать это очень просто: мы видим эритроциты, окружающие «личинку». Их диаметр – около 7,5 мкм. Самая широкая часть гельминта соответствует примерно трем эритроцитам с фото, то есть его максимальный диаметр – 22–23 мкм. И он не поместится ни в один капилляр (их диаметр, напомню, 5 мкм, максимум 10). Через прокол в пальце такой монстр выберется наружу, только если сзади его будут подталкивать сородичи, выкрикивая при этом: «Давай, ты сможешь, мы в тебя верим!» Так что в данном случае мы имеем дело с обычным постановочным, срежиссированным фото. Другими словами – с «фейком». С таким же успехом туда можно положить головную вошь и заявить, что она прогрызла кожу головы и с током крови добралась до подушечки пальца. Я даже термин могу под это с ходу придумать – педикулемия («педикулюс» – латинское название рода вшей, а «-емия» означает наличие чего-нибудь в крови).

Трихомонада – любимый паразит шарлатанов. На ней построено несколько альтернативных гипотез развития болезней, в частности рака. И само собой, придумано много несуществующих характеристик этого микроорганизма. Например, во всех современных руководствах по микробиологии указано, что трихомонада не способна образовывать защитную форму – цисту, именно поэтому очень быстро гибнет во внешней среде[59]. Это легко подтверждается простейшим лабораторным экспериментом. Тем не менее адепты альтернативных направлений заявляют, что трихомонада может образовывать цисты, правда, подтверждений своим словам никогда не приводят, а ссылаются на другие книги и брошюры с точно таким же голословным утверждением.

Зачастую мы имеем дело с обычным постановочным фото. С таким же успехом туда можно положить головную вошь и заявить, что она прогрызла кожу головы и с током крови добралась до подушечки пальца.

В тех же ненаучных источниках сообщается, что трихомонада, например ее влагалищная разновидность, умеет проникать в кровоток[60]. Опять же, без ссылок на исследования, тем более опубликованные в рецензируемых журналах. Подобные книги вообще не жалуют такую вещь, как библиография. Это нам – медицинским журналистам и нашим коллегам-ученым – приходится подтверждать каждое свое высказывание, а шарлатанам принято верить на слово. И что характерно, им почему-то верят.


Трихомонада


Но вернемся к трихомонаде, путешествующей по крови. Нормальной микробиологии такая разновидность паразита неизвестна. Зато известно, что влагалищная трихомонада – овальный микроорганизм размером 7×9 мкм (чуть больше эритроцита) с пятью хорошо заметными жгутиками с одного из полюсов. И как она выглядит, тоже не секрет.

Вот, скажем, фото микропрепарата из общедоступной библиотеки американского Центра по контролю и профилактике заболеваний (CDC) в Атланте[61].

Так что на иллюстрации из атласа гемосканирования однозначно не трихомонада. А кто тогда? Скорее не кто, а что. Эритроциты. Точно такие же, как и в других областях фотографии. А почему они такой странной формы?


Трихомонада-CDC


Все просто: капля крови – образование объемное, клетки в ней располагаются не в один ряд и не только анфас. Эритроциты тоже трехмерны, по форме напоминают сплюснутый в центре оладушек. Свет, идущий через эритроцит в объектив микроскопа, лучше проходит через его тонкие места и хуже – через утолщения. В результате мы и наблюдаем эритроциты в виде кружков со светлым центром.

Например, вот эта фотография в атласе подписана как «Норма».


Норма


Но если красные клетки крови повернуты к наблюдателю боком или развернуты под любым другим углом, то и выглядеть они будут не как кругляши. Один из таких вариантов шарлатаны и выдают за трихомонаду.

А вот и самый интересный экземпляр из моей коллекции микропрепаратов, собранной по различным источникам, посвященным гемосканированию.


Антенна-1


Впечатляюще выглядит, не правда ли? Если пациент увидит этакое страшилище в своей крови, он отдаст любые деньги, лишь бы от него избавиться. Собственно, на это и расчет.

Давайте посмотрим на «неопознанного паразита» при большом увеличении и сравним с личинкой паразита, которую мы уже видели.


Антенна-4


Что бросается в глаза? Личинка – гладкая, гибкая, без каких-либо выступов и узлов, приспособленная для передвижения в стесненных условиях. А «неопознанный паразит» весь покрыт длинными выростами, которые наверняка будут затруднять его продвижение. Кроме того, у личинки можно без труда определить, где вход в кишечный тракт (рот), а где из него выход (не рот). У волосатого чудища ни первое, ни второе найти не получается. Да и размеры просто гигантские: такое не то что в капилляры – не в каждую вену поместится.

Итак, как и в примере с личинкой паразита, мы имеем дело со срежиссированным артефактом. Нечто таких размеров и очертаний через прокол в подушечке пальца не сможет выбраться ни при каких условиях, то есть наблюдаемое в микропрепарате привнесено извне. И в данном случае можно точно установить, что это и откуда оно взялось.

Помните, мы говорили о том, что гемосканирование обычно проходит в не приспособленных для этого помещениях, грязных с точки зрения требований к клинической лаборатории? Так вот, «неопознанный паразит» попал в каплю крови из воздуха, и на самом деле это обломок хитиновой антенны комара-звонца. На фотографии с сайта Университета Мичигана очень хорошо видно сходство.


Комар-звонец


Кристаллы

В нашем организме действительно могут образовываться кристаллы. Чаще всего в моче, но и в крови они иногда встречаются.

Например, игольчатые кристаллы уратов (солей мочевой кислоты) при подагре. Их можно увидеть после определенной подготовки (фиксация, окраска)[62] препарата крови, однако при гемосканировании их почему-то обнаруживают и в живой капле, причем в очень интересном виде.


Мочевая кислота


Ну да, некая игольчатость присутствует, края острые, похожие на осколки… Постойте, но ведь это и есть осколки!

Присмотритесь, отлично видно, что стекло треснуло в центре от давления сверху. Так происходит, когда неопытные лаборанты или студенты слишком быстро выкручивают винт, приближающий объектив микроскопа к предметному столику. Линза сначала упирается в лежащее сверху препарата тонкое покровное стекло, а затем раздавливает его с характерным грустным хрустом. Кроме того, попадаются особенно сильные уникумы, умудряющиеся сломать таким манером и куда более толстое предметное стекло, на которое наносится капля крови или образец другой ткани.

Впрочем, в атласе встречаются и более экзотические примеры. Вот, скажем, кристаллы ортофосфорной кислоты.


Ортофосфорная кислота


Этим микропрепаратом рекомендуется пугать подростков, любящих пепси или кока-колу. Не знаю, как такое зрелище действует на неокрепшие детские умы, но у человека, имеющего большой опыт работы с микроскопом и обладающего познаниями в клинической лабораторной диагностике, оно вызывает лишь смех. Во-первых, ортофосфорная кислота прекрасно растворяется в воде[63], и с 1952 года, которым датирован указанный в сноске справочник, ровным счетом ничего не изменилось. Во-вторых, кристаллизуются ее полугидраты, и итоговые кристаллы получаются белого цвета, а не черного. В-третьих, для кристаллизации при температуре тела требуется настолько высокая насыщенность раствора[64], что это должна быть кровь Чужого, а не человека. В-четвертых, если присмотреться, можно заметить, что черное пятно находится на переднем плане, то есть не внутри крови, а как бы перед ней. И это ощущение абсолютно правильное. С подобными «кляксами» сталкивались многие лаборанты: это самая обычная грязь на линзе объектива.

С «кристаллами сахара», которые, по мнению составителей атласа, запечатлены на следующей фотографии, история примерно та же.


Кристаллы сахара


Во-первых, «сахара» в крови нет. Основной простой углевод нашего организма – моносахарид глюкоза. И авторам якобы медицинского издания неплохо бы это знать. Во-вторых, глюкоза в той концентрации, в которой она присутствует в крови, и при температуре тела кристаллизоваться не может[65], ей запрещают это делать законы химии и физики. Вспомните, когда засахаривается мед или варенье. Приблизительно столько же «сахара» должно быть и в крови.


Холестерин

Вообще-то в соответствии с химической номенклатурой этот жирный спирт положено называть холестеролом, но, чтобы вы, уважаемые читатели, окончательно не запутались, воспользуемся устоявшимся в русском языке, хотя и некорректным термином. Вот так, по мнению авторов атласа, выглядит под микроскопом холестерин.


Холестерин


Начнем с того, что холестерин – вещество липофильное и гидрофобное, то есть в воде нерастворимое от слова «вообще». Плазма крови на 90 процентов состоит из воды, так что самостоятельно путешествовать в этой неподходящей среде холестерин не умеет. Ему необходимы транспортеры-переносчики. Они называются липопротеинами и бывают разных размеров и плотности. Чем выше плотность и меньше размер, тем, по большому счету, лучше, не зря же липопротеины высокой плотности (ЛПВП) называют иногда «хорошим холестерином».

Теперь о размерах. Липопротеины – шарики, причем очень маленькие. Например, диаметр ЛПВП равен 7–13 нм[66], или 0,007–013 мкм (диаметр эритроцита, напомню, в среднем 7,5 мкм). Даже самые крупные липопротеины – хиломикроны – дотягивают лишь до 600 нм[67], или 0,6 мкм. Получается, диаметр самого крупного «холестерина», который мы теоретически могли бы увидеть в крови, в 12,5 раза меньше диаметра эритроцита. А это означает, что в лучшем случае при таком увеличении мы заметили бы точку и не смогли бы ее однозначно идентифицировать как хиломикрон, потому что в крови плавает много всяких мелких шариков. Для того чтобы отличить их друг от друга, используются различные методы окрашивания, а при гемосканировании, как мы помним, рассматривают «натуральную» – неокрашенную и необработанную – кровь.

Но может, это знаменитая холестериновая бляшка? Опять нет. Их в крови не видно[68]. Ну и снова прикиньте примерный размер образования и вспомните, что кровь берут из пальца. Да, мы в который уже раз упираемся в узость капилляров. Так что же на фото? Что угодно. Любой мусор, попавший в ничем не защищенную каплю крови.

Это касается и следующего артефакта, выдаваемого за «мягкий сосудистый холестерин».


Мягкий сосудистый холестерин


Прежде всего, такой разновидности просто не существует: ее нельзя найти ни в одном учебнике биохимии, ни в одном руководстве по клинической лабораторной диагностике. Кроме того, снова отметим абсолютно не подходящие для капилляров размеры и обратим внимание на откровенно волокнистое строение, для жиров нехарактерное, они скорее напоминают хозяйственную губку в разрезе. А в данном случае в препарат всего-навсего попала нитка.

Ну и напоследок разберем «спикулы фибриногена», которые, по мнению составителей атласа, свидетельствуют о застое крови и нагрузке на печень.


Спикулы фибриногена


Давайте еще раз вспомним процедуру диагностики: у пациента берут каплю крови из пальца, помещают на предметное стекло, ничем ее не обрабатывая, и несколько минут рассматривают под микроскопом. Что происходит с кровью, как только ее извлекли из организма? В ней запускаются процессы свертывания. И тот процесс, который можно наблюдать на экране монитора или на фото из атласа, – это норма. Именно так выглядит свертывание крови: эритроциты склеиваются между собой, в плазме появляются нити особого белка фибрина… Кстати, это очередная ошибка гемосканеров: фибриноген – небольшой и хорошо растворимый белок, его в крови не видно. Он становится заметен, когда во время свертывания полимеризуется и соединяется в фибриновые нити: из них возникает некое подобие невода или паутины, в которой застревают форменные элементы крови. Еще раз: за патологию в данном случае выдается абсолютно нормальный физиологический процесс.

Диагнозотворчество

Возникает два логичных вопроса. Первый: если все эти паразиты, «нити холестерина» и прочие страшные образования не помещаются в капиллярах и не проходят через прокол в подушечке пальца, откуда они берутся в препаратах? Ответ простой: извне. Вариантов доставки много. Так, на плохо помытых или промытых загрязненной водой предметных стеклах можно обнаружить целый зоопарк. Кроме того, как мы уже говорили, капля крови постоянно контактирует с воздухом, где много чего летает. Артефакты могут падать с одежды и головы оператора. Не стоит забывать и о возможности другого вида обмана: пациенту могут показывать не его кровь, а заранее подготовленную запись с набором всякой живности. Режиссер Кэмерон вон целую планету создал с трехметровыми синекожими существами, а тут всего-то нужно добавить в кровь «гриб» или «кристалл».

Кстати, на нескольких видео в YouTube, найденных по запросу «гемосканирование», можно наблюдать, что эритроциты на экране монитора движутся, а некоторые «паразиты» как будто приклеены к своим местам, что также наводит на нехорошие мысли о заранее подготовленном обмане.

Второй вопрос: зачем это нужно? И тут ответ тоже простой: напугать. Найти у человека несуществующую болезнь, после чего «вылечить» или «профилактировать» ее. За очень круглую сумму денег. Это подтверждается в том числе и диагнозами, которые операторы ставят своим клиентам.

Возьмем хотя бы пресловутое «закисление крови». В МКБ-10 такой патологии нет, зато она прекрасно вписывается в отвергнутую наукой гипотезу Эндерляйна, ведь в «кислой» крови бактерии могут превратиться в грибы и вызвать туберкулез и рак. А чтобы предотвратить столь ужасное развитие событий, необходимо «ощелачиваться», например принимая БАД с коралловым кальцием.

В действительности же у крови и без того есть мощнейшие буферные системы, которые сглаживают колебания pH в щелочную (алкалоз) или кислую (ацидоз) сторону. Но если они не справляются и система идет вразнос, как бывает, скажем, при диабетической кетоацидотической коме, никакие биодобавки не спасут – помогут только инфузионная терапия и прочие серьезные вмешательства в условиях стационара.

По сути, за патологические изменения в крови выдаются либо случайные или привнесенные артефакты, либо вообще нормальный процесс свертывания.

Еще один диагноз – «дисбактериоз крови». А вот это уже даже не смешно. В норме кровь стерильна[69], у нее нет никакого микробиома.

На одном из профильных семинаров весьма известный и популярный в кругах альтернативщиков доктор (к сожалению) Ольга Бутакова, снисходительно смеясь, рассказывала, что для обычных врачей, не обладающих знаниями о гемосканировании, «кровь стерильна по приказу Минздрава». Однако приказы тут ни при чем; это биологическая константа, которую очень легко проверить, если взять достаточный объем крови и посеять ее на разные питательные микробиологические среды. Да, действительно: распространение возбудителей с кровью при некоторых инфекциях, то есть гематогенную диссеминацию, никто не отменял. Но для этого придется брать и сеять не капиллярную кровь, а артериальную, причем не факт, что во взятый образец попадет нужное количество бактерий. Еще заражение может происходить при неправильном сборе и хранении донорской плазмы, эритроцитарной массы или цельной крови[70], но это тоже выявляется микробиологическими методами и это определенно не норма.

Шарлатаны с темнопольными микроскопами помимо всего прочего очень любят находить «напряжение» в органах и системах. Например, может быть «напряжение печени». А о «напряжении иммунитета» мы спросим иммунолога, кандидата медицинских наук Татьяну Акимову (Тихомирову), которая двигает науку в Пенсильванском университете – фактически на родине гемосканирования, в США. Может, там «напряжение иммунитета» уже стало привычным?

«Такого понятия нет, есть “напряженность иммунитета”, и это слегка другое – уровень защиты, который есть у данного человека против конкретного заболевания. Защита появляется после эффективной вакцинации (прививок) или после самой болезни. Например, если вы переболели в детстве корью, то, скорее всего, не заболеете ею второй раз. Напряженность иммунитета не может быть изучена под микроскопом, и невозможно узнать про иммунитет ко всем заболеваниям сразу. На каждое конкретное заболевание выполняется отдельный тест специальным набором реагентов. Общий принцип такой: на плашку помещают антигены возбудителя (например, столбнячный токсин) и добавляют жидкую часть крови – плазму или сыворотку. Если у человека есть антитела против столбнячного токсина, они свяжутся с токсином на плашке. Вторым этапом эти связавшиеся антитела обнаруживают специальными реагентами и затем их количество подсчитывают. Метод называется ИФА (иммуноферментный анализ) / ELISA.

Почему нельзя изучить напряженность иммунитета под микроскопом? Ну, во-первых, потому что антитела в жидкой части крови таким методом вообще не видны из-за их размера. А во-вторых, даже если кровь покрасить реагентом, который позволит увидеть сконцентрированные антитела в виде пятен, полосок или точек, они не будут нести на себе плакаты “Я антитело от столбняка!” и “Привет, я антитело от кори!”, а будут просто точками, пятнами и полосками.

Таким образом, напряженность иммунитета против чего угодно просто под микроскопом определить невозможно при всем желании. Кстати, многие поколения ученых и врачей сразу после изобретения микроскопа именно этим и занимались (им простительно, они тогда не знали). Микробов покрупней, а именно бактерии, самые удачливые и умелые в итоге разглядели, но вот иммунитет к ним – увы. Ну и раз зашла об этом речь, то из важных для нас вирусов в световой микроскоп виден лишь один – вирус оспы. Натуральной оспы. Но вряд ли вам понадобится на него смотреть. Остальные вирусы слишком мелкие».

Хорошо, отложим в сторону напряжение с напряженностью. Но можно ли увидеть под микроскопом хоть что-то, характеризующее состояние иммунитета конкретного пациента? Можно ли что-то узнать о проблемах с иммунитетом, используя микроскоп и каплю крови без всяких окрасок и обработок? Если да, то что именно?

Эксперт непреклонна.

«Кратко – ничего. Без окраски будут видны клетки чуть покрупней, средние клетки и мелкие постклеточные структуры (эритроциты и тромбоциты). Это не расскажет об иммунитете ничего и никому. Ну кроме самого факта, что у вас есть кровь и в ней есть клетки.

Чуть более полный ответ: даже обычный и самый, пожалуй, древний клинический анализ крови, который каждый сдавал в поликлинике десятки раз, изучается после специальной окраски крови, причем в виде мазка, а не капли (если вручную). Только после окраски и фиксации клетки вместо одинаковых полупрозрачных шариков станут лимфоцитами или нейтрофилами.

Если же анализ крови выполняется на геманализаторе, то клетки крови летят по одной в струе жидкости, и специальной машиной оценивается их точный размер, их поверхность и их количество. Тогда в вашем анализе крови будут такие сокращения, как RBC, WBC, MCV и т. д. Еще к базовым анализам на иммунитет относится подсчет иммуноглобулинов классов A, G, M, E. Никакого микроскопа, конечно. Для этого нужны специальные реагенты, а используемый метод – чаще всего ИФА. С помощью ИФА оценивают и напряженность иммунитета к разным заболеваниям (см. выше).

Еще один частый тест, который может быть полезен при подозрении на проблемы с иммунитетом, – это биохимия крови: целый комплекс тестов на разные биологические или химические вещества в крови, а выполняется он, как можно догадаться, биохимическими методами. Если у человека имеются симптомы иммунодефицита и перечисленные тесты показали отклонения, то в зависимости от симптомов дальше нужно идти либо к инфекционисту, либо к ревматологу, либо к эндокринологу, а возможно, и к иммунологу. Каждый из этих врачей будет использовать свои методы диагностики, и нет, микроскопия мазка крови в число этих методов не входит».

Но, как вы понимаете, для поклонников и практиков гемосканирования это всего лишь не заслуживающее внимания мнение зашоренного и не готового принять нечто новое и неизведанное ученого, купленного на корню всеми фармкомпаниями сразу. Псевдодиагностам все равно, что у Татьяны Акимовой есть публикации в авторитетных и рецензируемых (но определенно цензурируемых мировым правительством) научных журналах. Они не учитывают и тот факт, что, прежде чем стать исследователем, наш эксперт была отъявленной альтернативщицей и даже немного сектанткой, а в свое время пошла в медицинский вуз только затем, чтобы разрушать прогнившее здание официальной медицины изнутри[71].

Во время съемок фильма «Шарлатаны» (как и обещал, снова про него вспоминаю) мы направили олимпийского чемпиона Александра Зубкова на диагностику по живой капле крови. Здесь, в отличие от биорезонанса, жалобы и анамнез не собирали, а с ходу стали выносить вердикты один страшнее другого. Например, у спортсмена нашли слипшиеся «закисленные» эритроциты, которые не выполняют свою функцию – перенос кислорода. Разбирая последнюю фотографию из атласа, я упоминал, о чем на самом деле говорят столбики эритроцитов в такой капле крови – о нормальном процессе свертывания и высыхания препарата. Но Александру объяснили, что наблюдаемая картинка свидетельствует о гипоксии и «снижении энергетики». Еще один не очень понятный термин; интересно, они какую энергетику имели в виду – газовую или атомную? Также у Александра нашли проблемы с печенью, желудком и, само собой, паразитов в крови. Врач-оператор сказал изумительную фразу, после которой, по большому счету, его нужно лишать диплома: «Все, что отличное от эритроцита, мы называем паразитоформами». Что, и лейкоциты? И тромбоциты? Это определенно новое слово в гематологии. Но какое-то нецензурное.

Проверка на прочность

Предположим, что мы просто чего-то не знаем или не до конца понимаем, а гемосканирование реально работает, как собаки, крысы и голуби из раздела «Зверские диагносты». Это означает, что, как и в случае со зверями и птицами, операторов темнопольных микроскопов можно перепроверить. Самое интересное, что занимались этим специалисты, практикующие альтернативную и комплементарную медицину, то есть фактически братья по оружию. Только вот они почему-то оказались не братьями.

В одном случае взяли двух опытных операторов, обученных в полном соответствии с заветами Эндерляйна и его современных последователей. Им предложили 48 образцов капиллярной крови от 24 пациентов, страдающих сахарным диабетом. Как вы понимаете, этот диагноз достаточно легко подтвердить, всего-навсего измерив в крови уровни глюкозы и гликированной («засахаренной») формы гемоглобина. После этого лаборантов попросили найти в предоставленных им препаратах характерные эндерляйновские структуры (эндобионты, патогены, вот это все).

Образцы предлагались для изучения в случайном порядке. Чисто теоретически перечень эндерляйновских объектов, найденных в двух препаратах одного и того же человека, должен был совпасть. И он действительно совпал – в 44 процентах, если оценивалась частота совпадений у одного лаборанта, и в 35 процентах, если кровь одного пациента смотрели оба лаборанта[72]. Результаты эксперимента были опубликованы в журнале Alternative therapies in health and medicine («Альтернативные методы лечения в здоровье и медицине»).

Второе исследование было описано сразу в двух немецких журналах: Versicherungsmedizin[73] («Страховая медицина») и Forschende Komplementärmedizin und klassische Naturheilkunde[74] («Исследования в комплементарной и классической натуротерапии»). Авторы задались вопросом: действительно ли темнопольщики, практикующие гемосканирование, могут обнаруживать рак по каким-либо признакам в крови? Собаки вот по запаху могли. Голуби по изображениям – тоже. С очень хорошими показателями. А люди?

Люди подкачали. Обученному опытному лаборанту предложили 110 образцов крови пациентов, у 12 из которых были злокачественные опухоли с метастазами, подтвержденные КТ, МРТ и УЗИ. Оператор угадал только троих, показав специфичность 25 процентов (птицы и звери, напомню, дотягивали до 99). При повторных тестах уровень позитивного ответа снизился до 9 процентов.

Строго говоря, это все, что вам нужно знать о научной базе гемосканирования. Даже сами альтернативщики в своих изданиях оценивают эффективность методики как неудовлетворительную и не рекомендуют пользоваться ею для постановки диагнозов.

В этом их горячо поддерживают контролирующие и надзорные органы разных стран. Прежде всего – США, где в истинной сущности и предназначении методики разобрались довольно быстро и реальные меры противодействия стали применять с 1996 года. Разбирательство, произошедшее тогда между компанией Infinity 2 и департаментом лабораторий штата Пенсильвания, весьма интересно в плане аргументации, которой пользуются гемосканеры. И очень хорошо объясняет, почему им в большинстве случаев удается выкрутиться. Итак, претензии лицензирующего органа сводились к тому, что в фирме проводили «нутрициологический анализ крови» на темнопольном микроскопе, на что никаких разрешительных документов не было. Однако адвокат Infinity 2 ловко вышел из положения, объяснив[75], что врачи в их компании просто демонстрировали клиенту содержимое капли его крови на мониторе и использовали это лишь как мотивирующий фактор, никаких комментариев по поводу состава крови при этом не давалось, никаких диагнозов не выставлялось. А рекомендации по питанию и образу жизни давались на основании личного интервью, заполненного опросника и прочих разрешенных врачебных действий.

Департамент лабораторий был вынужден принять такое объяснение, но предупредил[76], что потребует наличия лицензии и передаст дело в соответствующие инстанции, если ее не будет в следующих случаях:

• на основании просмотра образца крови назначается та или иная пищевая добавка (БАД);

• на основании просмотра образца крови даются рекомендации по коррекции рациона питания и/или образа жизни;

• одному и тому же пациенту выполняется как минимум один повторный анализ;

• проводится сравнение образца крови пациента с изображениями в атласе или любой базе данных;

• в ходе демонстрации образца крови пациенту даются какие-либо комментарии о качественных и количественных характеристиках крови. Без лицензии разрешается лишь указывать на наличие эритроцитов, лейкоцитов и тромбоцитов, не более того.

В США доктора Джона Тота, практиковавшего гемосканирование, приговорили к тюремному заключению: он не только «нашел» у пациентки боррелиоз, которого на самом деле не было, но и ввел ей внутривенно некий «исцеляющий биопрепарат», после чего женщина скончалась.

Примечательно, что все перечисленное как раз и входит в гемосканирование, именно этим и занимаются вооруженные темнопольными микроскопами наследники Эндерляйна. И даже в колыбели методики, оплоте демократии и самой свободной стране мира (сарказм) на диагностику по живой капле крови требуется лицензия. Но ее не дадут: в 2001 году офис генерального инспектора Министерства здравоохранения и социальных служб США, проанализировав всю накопленную информацию, отнес методику к неприемлемым[77]. Единственный путь легализации – получение разрешительных документов на высокотехнологичное лабораторное оборудование (сертификат CLIA). Но, во-первых, его очень сложно получить, во-вторых, он стоит немалых денег, в-третьих, он все равно не позволяет применять гемосканирование для постановки диагноза и назначения лечения.

После этого пошла череда судебных процессов. Так, в 2011 году были осуждены[78] три менеджера и врач, которые поставили гемосканирование на поток: доктор под микроскопом «диагностировал» по капле крови болезнь Лайма (клещевой боррелиоз), а прочие работники фирмы продавали обескураженным клиентам различные «лекарства». Менеджеры отделались условным сроком, частичной конфискацией и возмещением ущерба, а вот доктора Джона Тота приговорили к реальному тюремному заключению: он не только «нашел» у пациентки боррелиоз, которого на самом деле не было, но и ввел ей внутривенно некий «исцеляющий биопрепарат», после чего женщина скончалась.

В других странах картина схожая. Например, в 2002 году в Австралии был арестован натуропат Джеффри Даммет, практиковавший диагностику по живой капле крови, находивший у людей несуществующие болезни и лечивший их «натуральными» средствами. Одному из пациентов – страдавшему хронической болезнью почек 37-летнему сотруднику охранной фирмы – по результатам гемосканирования была назначена 10-дневная «детокс-программа». Мужчина потерял 11 килограммов и умер от развившейся острой почечной недостаточности. Отбыв наказание, врач сменил имя, а Верховный суд Австралии в 2008 году пожизненно лишил его права на медицинскую практику[79].

А что в России? Есть повод порадоваться: наши Роспотребнадзор и Росздравнадзор разделяют точку зрения своих коллег из других развитых стран. У меня на руках есть копия письма Управления Росздравнадзора по Краснодарскому краю от 16 октября 2008 г. № И23-2534/08, где говорится, что метод диагностики по живой капле крови (гемосканирование) к применению в медицинской практике не зарегистрирован. Аналогичный ответ был получен из центрального аппарата Федеральной службы по надзору в сфере здравоохранения.

Это можно проверить и в базах официальных документов. Так, в Номенклатуре клинических лабораторных исследований, утвержденной действующим приказом Минздрава РФ от 21 февраля 2000 г. № 64, данной методики нет. Зато есть много чего другого интересного. В частности, подробно описано, какие микроорганизмы и с помощью каких методик можно обнаружить в различных биологических средах, в том числе в крови. Впрочем, это не мешает поклонникам «живой капли» активно использовать ее для обмана клиентов, особенно в структурах многоуровневого маркетинга, распространяющих БАД, фиточаи, «заряженную» или «коралловую» воду, а также разнообразные «исцеляющие» чудо-приборы.

Реально ли доказать, что гемосканеры вас обманули? Практически нет.

Запрет на применение нелицензированных медицинских технологий обойти очень просто, о чем говорила гуру одной из таких организаций Ольга Бутакова на уже упоминавшемся в начале главы семинаре (цитирую по видеозаписи): «Законно мы не имеем права ставить диагностику [по живой капле крови] как диагностику, но проверить действие препаратов мы можем. Есть прецеденты в двух городах – Иркутске… и Кирове: взяли лицензию на забор крови, организовали центр здоровья – и все абсолютно легально».

Поскольку семинар был для своих, переметнувшийся на «темную сторону» доктор не особо скрывала реальное положение вещей: «Темнопольная диагностика в стране не залицензирована как лечебная процедура, но никто не может запретить смотреть, например, хлеб… Вы имеете право смотреть любую жидкость. В принципе, на забор крови нужно только разрешение на сам укол пальца. То есть если медсестра у вас лицензированная и забор крови разрешен, вы можете выполнять любую деятельность. Я бы вам советовала не называть это диагностикой, я бы советовала вам называть это тестированием».

Там же был дан ценный совет по эффективной организации: нужно найти харизматичного врача, к которому потянутся пациенты. При этом не нужно озадачивать его постановкой диагнозов и продажей препаратов, чтобы не подставлять. Пусть он проводит гемосканирование, комментирует все, что видит на экране, но окончательной расшифровкой результатов, вынесением вердиктов и назначением «лечения» должен заниматься MLM-дистрибьютор, сидящий у кабинета врача-диагноста. Действительно, при таком раскладе врач практически ничем не рискует и пойдет на сотрудничество охотнее, особенно если искренне поверит в эффективность методики.

* * *

Реально ли доказать, что гемосканеры вас обманули? Практически нет, к огромному сожалению.

Во-первых, как уже говорилось, даже не всякий врач сможет заподозрить в методике подлог: очень уж привлекательно все обставлено. И отторжения в большинстве случаев гемосканирование не вызывает, особенно если уровень знаний врача оставляет желать лучшего.

Во-вторых, даже если пациент пойдет потом в обычный диагностический центр и у него там ничего не найдут, можно в крайнем случае свалить все на врача-оператора, проводившего диагностику: мол, ошибся, с кем не бывает. И действительно, визуальная оценка сложных изображений целиком и полностью зависит от квалификации и даже физического состояния того, кто ее проводит. То есть метод не является достоверным, поскольку напрямую зависит от так называемого человеческого фактора.

В-третьих, всегда можно сослаться на некие тонкие материи, которые пациенту понять не дано. Это последний рубеж, на котором насмерть стоят все околомедицинские мошенники.

Что же мы имеем в сухом остатке? Профессиональных лаборантов, которые выдают случайные, а иногда и откровенно срежиссированные артефакты в капле крови за страшные заболевания. И потом предлагают лечить их пищевыми добавками. Естественно, все это за деньги, и не то чтобы маленькие.

Вердикт по ШРнД

Соответствие большим критериям

• II: диагностируют огромный спектр патологии во всех органах и системах, при этом данные в научной медицинской литературе, даже альтернативно-комплементарной направленности, свидетельствуют о несостоятельности методики и невозможности ее использования в диагностических целях.

+5 баллов

• III: диагноз «Здоров» не ставится в принципе – обязательно обнаружат или паразитов, или «закисление» крови.

+5 баллов

• IV: лечение на месте, даже с использованием того же самого прибора; коррекция состояний при помощи БАД и других чудо-препаратов. +5 баллов


Соответствие малым критериям

• I: хирургические диагнозы не ставятся, не приходилось слышать или читать, чтобы у кого-то на гемосканировании обнаружили острый аппендицит или паховую грыжу.

+1 балл

• III: уровень визуализации максимальный, клиенту демонстрируется его собственная кровь, хотя ни одна из существующих методик в этом не нуждается, так как действие это не несет в себе никакого практического смысла. +1 балл

• IV: не обнаруживается «контрольная» патология, что неоднократно подтверждалось экспериментами – как личными, так и поставленными в ходе съемок фильма «Шарлатаны». +1 балл

• V: результаты не подтверждаются существующими методами диагностики, источник – литература и исследования по теме, а также личный опыт. +1 балл

• VI: гемосканирование всегда шифруется, мимикрируя под настоящую клиническую лабораторную диагностику, на которую и выдаются разрешительные документы.

+1 балл


Итого: 20 баллов при необходимом минимуме в 6 баллов.

Примеры приборов привести невозможно, поскольку используется реально существующее лабораторное оборудование (высокотехнологичные оптические микроскопы).

Так что распознать обман можно по картинкам крови, которые вам демонстрируют на экране монитора, а также по характерной терминологии и диагнозам.

Это интересно

О том, что в России можно гемосканировать без особых опасений, говорят и зарубежные гуру. Так, на весьма представительной конференции, организованной в нашей стране, Курт Грейндж (тот самый, которого отдельные источники называют отцом диагностики по живой капле крови), комментируя один из микропрепаратов, сказал следующее: «Это паразит внутри эритроцита, это не малярия. Антибиотики его не берут, а коллоидное серебро – да. Если бы мы были сейчас в США, я бы вам этого сказать не мог, забрали бы лицензию»[80].

Правильно сделали бы, между прочим, если бы забрали. Потому что есть три микроорганизма, жизненный цикл которых связан с эритроцитами человека и которых можно увидеть в оптический микроскоп внутри красных клеток крови: простейшие, представители рода плазмодиев, вызывающие малярию[81]; бабезии, возбудители бабезиозов[82]; некоторые бактерии из семейства риккетсий, например бартонеллы, имеющие отношение к болезни кошачьей царапины. И вот бартонелл с бабезиями (раз не малярия, то определенно кто-то из них) берут только антибиотики[83], а коллоидное серебро как раз нет. И выглядят они не как светлое пятно в центре эритроцита (мы уже разбирали, откуда оно берется), а как множественные темные точки в нем.

Псевдотестирование способностей