Паутина жизни. Новое научное понимание живых систем — страница 35 из 64

На рис. 8–1 изображена схема типичного пищевого цикла. По мере того как растения поедаются животными, которых, в свою очередь, поедают другие животные, питательные вещества растений проходят по пищевым сетям, а энергия рассеивается в виде тепла через дыхание и выделения. Отходы, а также мертвые животные и растения перерабатываются так называемыми «разлагающими организмами» (насекомыми и бактериями): в ходе этой переработки из отходов освобождаются первоначальные (базовые) питательные вещества и их снова поглощают зеленые растения. Таким образом, питательные вещества и другие основные элементы непрерывно циркулируют по всей экосистеме, причем энергия рассеивается на каждой стадии. Так осуществляется афоризм Юджина Одума: «Материя циркулирует, энергия рассеивается»2. Единственным отходом экосистемы в целом оказывается тепловая энергия дыхания: она рассеивается в атмосфере и непрерывно пополняется через фотосинтез за счет солнечного излучения.

Наша иллюстрация, конечно, сильно упрощена. Реальные пищевые циклы могут быть поняты только в контексте гораздо более сложных пищевых паутин, в которых первоначальные, базовые питательные элементы представлены многими химическими соединениями. В последние годы наши знания в области пищевых паутин значительно расширились и усовершенствовались благодаря Гайя- теории, которая показывает сложное переплетение живых и неживых систем во всей биосфере — растений и камней, зверей и атмосферных газов, микроорганизмов и океанов.



Рис. 8–1. Типичный пищевой цикл

Более того, поток питательных веществ через организмы экосистемы не всегда однороден и гладок, но часто сопровождается импульсами, перепадами и разливами. По словам Пригожина и Стенгерс, «энергетический поток, который пересекает [организм], чем-то напоминает реку, которая большей частью течет спокойно, но время от времени устремляется вниз водопадом, высвобождая часть содержащейся в ней энергии»3.

Понимание живых структур как открытых систем было важным новым подходом, который, однако, не решил загадку сосуществования структуры и изменения, порядка и рассеяния, пока Илья Пригожий не сформулировал свою теорию диссипативных структур4. Как Берталанфи объединил понятия потока и равновесия для описания открытых систем, так и Пригожий объединил «диссипацию» (рассеяние) и «структуру», чтобы выразить две кажущиеся противоречивыми тенденции, которые сосуществуют во всех живых системах. Однако концепция диссипативных структур Пригожина идет гораздо дальше теории открытых систем, поскольку включает также представление о точках неустойчивости, в которых могут возникать новые структуры и новые формы порядка.

Теория Пригожина связывает главные характеристики живых форм в последовательную концептуальную и математическую модель, которая предполагает радикальный пересмотр многих фундаментальных идей, касающихся структуры, — переносит акцент от устойчивости к неустойчивости, от порядка к неупорядоченности, от равновесия к неравновесным состояниям, от бытия к становлению. В центре мировоззрения Пригожина лежит сосуществование структуры и изменения, «покоя и движения»; он изящно поясняет это ссылкой на древнюю скульптуру:

Каждый великий период науки предполагал некоторую модель природы. Для классической науки это были часы; для XIX века, периода Промышленной Революции, это был глохнущий мотор. Какой же символ изберем мы? Наше разумение может быть выражено ссылкой на скульптуру — от индейского, доколумбового искусства до наших времен. В самых прекрасных произведениях скульптуры, будь то танцующий Шива или миниатюрные храмы Герреро, отчетливо проявляется стремление соединить покой с движением, время остановленное с временем уходящим. Мы убеждены, что это противоречие подарит нашему времени свою неповторимость5.

Неравновесные состояния и нелинейность

Ключ к пониманию диссипативных структур лежит в осознании того, что они поддерживают себя в устойчивом состоянии, далеком от равновесия. Эта ситуация настолько отличается от феномена, описываемого классической наукой, что мы сталкиваемся с трудностями традиционного языка. Словарные определения понятия «устойчивый» включают «фиксированный», «не колеблющийся» и «неизменный» — все они неадекватно описывают диссипативные структуры. Живой организм характеризуется непрерывным потоком и изменениями в обмене веществ, включающем тысячи химических реакций. Химическое и тепловое равновесие наступает тогда, когда все эти процессы прекращаются. Другими словами, организм в состоянии равновесия — это мертвый организм. Живые организмы непрерывно поддерживают себя в далеком от равновесия состоянии, которое, по сути, есть состояние жизни. Сильно отличаясь от равновесия, это состояние, тем не менее, сохраняет устойчивость в течение продолжительных периодов времени, что означает, как и в случае вихря, что поддерживается одна общая структура, несмотря на непрекращающийся поток и изменение компонентов.

Пригожий понял, что классическая термодинамика — первая наука, трактующая сложные системы, — не подходит для описания далеких от равновесия систем из-за линейной природы ее математической структуры. Близко к состоянию равновесия — в диапазоне классической термодинамики — находятся процессы типа потока, однако они слабы. Система всегда развивается в сторону стационарного состояния, в котором генерация энтропии (или беспорядка) сведена к минимуму. Другими словами, система минимизирует свои потоки, функционируя предельно близко к состоянию равновесия. В этом диапазоне потоковые процессы могут быть описаны линейными уравнениями.

Чем дальше от равновесия, тем потоки становятся сильнее, увеличивается выработка энтропии, и тогда система больше не стремится к равновесию. Наоборот, здесь уже могут встретиться неустойчивости, ведущие к новым формам порядка, которые отодвигают систему все дальше и дальше от состояния равновесия. Другими словами, вдали от равновесия диссипативные структуры могут развиваться в формы все более возрастающей сложности.

Пригожин подчеркивает, что характеристики диссипативной структуры не могут быть выведены из свойств ее частей, но обусловлены «сверхмолекулярной организацией»6. Корреляции дальнего типа проявляются как раз в точке перехода от равновесия к неравновесному состоянию, и, начиная с этого момента, система ведет себя как единое целое.

Вдали от равновесия потоковые процессы в системе взаимосвязаны через многочисленные петли обратной связи, а соответствующие математические уравнения нелинейны. Чем дальше диссипативная структура от равновесия, тем выше степень сложности и нелинейности описывающих ее математических уравнений.

Учитывая критическую связь между неравновесным состоянием и нелинейностью, Пригожий и его коллеги разработали нелинейную термодинамику для далеких от равновесия систем, использовав для этого аппарат теории динамических систем — новую математику сложных систем, которая тогда только начинала развиваться7. Линейные уравнения классической термодинамики, как отмечал Пригожий, можно анализировать с помощью точечных аттракторов. Какими бы ни были начальные условия системы, она «увлекается» к стационарному состоянию с минимальной энтропией, предельно близко к равновесию, и ее поведение полностью предсказуемо. Как выражается Пригожий, системы в линейном диапазоне «склонны забывать свои начальные условия»8.

За пределами линейного диапазона ситуация совершенно другая. Нелинейные уравнения, как правило, имеют больше чем одно решение; чем выше степень нелинейности, тем больше решений. Это означает, что новые ситуации могут возникать в любой момент. Говоря математическим языком, система в этом случае попадает в точку бифуркации, где может отклониться в совершенно другое состояние. Далее мы увидим, что поведение системы в точке бифуркации (т. е. по какому из нескольких возможных направлений она пойдет) зависит от предыдущей истории системы. В нелинейном диапазоне начальные условия уже «не забываются».

Кроме того, теория Пригожина показывает, что поведение далекой от равновесия диссипативной структуры не подчиняется ни одному из универсальных законов: оно уникально для данной системы. Вблизи точки равновесия мы находим повторяющиеся феномены и универсальные законы. По мере удаления от равновесия, мы движемся от универсального к уникальному, в направлении богатства и разнообразия. Это, конечно, хорошо известная характеристика жизни.

Наличие точек бифуркации, в которых система может пойти по любому из нескольких различных направлений, предполагает, что неопределенность является еще одной характеристикой теории Пригожина. В точке бифуркации система может сделать «выбор» — этот термин здесь используется метафорически — между несколькими возможными направлениями, или состояниями. Какое направление она выберет, будет зависеть от истории системы и различных внешних условий и никогда не может быть предсказано. В каждой точке бифуркации существует неустранимый элемент случайности.

Неопределенность в точках бифуркации представляет собой один из двух типов непредсказуемости в теории диссипативных структур. Другой тип, характерный также для теории хаоса, обусловлен высокой степенью нелинейности уравнений и проявляется даже тогда, когда бифуркации отсутствуют. Из-за многократных петель обратной связи — или, математически, многократных итераций — мельчайшая погрешность в вычислениях, вызванная практической необходимостью определенного округления цифр, неизбежно значительно повышает степень неопределенности, делая предсказания невозможными9.

Как неопределенность в точках бифуркации, так и неопределенность «хаотического типа» из-за повторяющихся итераций предполагают, что поведение диссипативной структуры может быть предсказано лишь на короткий промежуток времени. После этого системная траектория ускользает от нас. Таким образом, теория Пригожина, как квантовая теория и теория хаоса, еще раз напоминает нам, что научное знание обеспечивает не более чем «ограниченное окно во вселенную»10.