Паутина жизни. Новое научное понимание живых систем — страница 38 из 64

В детерминистском мире Ньютона нет места истории и творчеству. В живом мире диссипативных структур история играет важную роль, будущее неопределенно, и эта неопределенность служит основой творчества. «Сегодня, — размышляет Пригожин, — мир, который мы видим снаружи, и мир, который мы ощущаем внутри, сближаются. Это сближение двух миров — вероятно, одно из наиболее важных культурных событий нашего века»27.

Примечания к главе 8

1. См. выше, с. 65. 2.Odum(1953).

Prigogine and Stengers (1984), p. 156.

См. выше, с. 103.

Prigogine and Stengers (1984), pp. 22–23.

Там же, pp. 143–144.

См. выше, с. 131.

Prigogine "and Stengers (1984), p. 140.

См. выше, с. 144.

10. Prigogine (1989).

11. Цитируется по Сарга (1975), p. 45.

Я использовал общий термин «каталитические петли (циклы)» для обозначения множества сложных нелинейных взаимоотношений между катализаторами, включая автокатализ, перекрестный катализ и самоторможение. Более подробно см. PrigogineandStengers (1984), p. 153.

Prigogine and Stengers (1984), p. 292.

См. выше, с. 28.

См. выше, с. 63–64.

Prigogine and Stengers (1984), p. 129.

См. выше, с. 139–140.

См. Prigogine and Stengers (1984), p. 123–124.

Если N — общее количество частиц, Ni — частицы на одной стороне, а N2 — на другой, то число различных возможностей определяется формулой Р = N!/N!xN! где N! — факториал N, т. е. 1x2x3… xN.

Prigogine (1989).

См. Briggs and Peat (1989), p. 45ff.

См. Prigogine and Stengers (1984), p. 144ff.

Cm. Prigogine (1980), p. 104ff.

Goodwin (1994), p. 89ff.

См. ниже, с. 238.

Prigogine and Stengers (1984), p. 176.

Prigogine (1989).

Глава 9 Самосозидание

Клеточные автоматы

Когда Илья Пригожий разрабатывал свою теорию диссипативных структур, он искал простейшие примеры, которые можно было бы описать математически. Он нашел их в каталитических циклах химических колебаний, также известных как «химические часы»1. Это не живые системы, однако те же типы каталитических циклов лежат в основе метаболизма клетки, простейшей из известных живых систем. Поэтому модель Пригожина позволяет нам объяснить существенные структурные особенности клеток на языке диссипативных структур.

Умберто Матурана и Франциско Варела следовали подобной стратегии, когда они разрабатывали теорию автопоэза — паттерна организации живых систем2. Они задавали себе вопрос: какое простейшее воплощение автопоэзной сети можно описать математически? Как и Пригожин, они обнаружили, что даже простейшие клетки слишком сложны для математической модели. С другой стороны, они понимали, что поскольку паттерн автопоэза является определяющей характеристикой живой системы, то в природе не найти автопоэзной системы проще, чем клетка. Поэтому, отказавшись от поисков естественной автопоэзной системы, они решили смоделировать ее в виде компьютерной программы.

Их подход был аналогичен модели Мира маргариток, разработанной Джеймсом Лавлоком несколькими годами позже3. Однако там, где Лавлока интересовала простейшая математическая модель планеты с биосферой, регулирующей собственную температуру, Матурана и Варела искали простейшую модель сети клеточных процессов, воплощающей автопоэзный паттерн организации. Это означало, что им нужно было разработать особую компьютерную программу: она должна моделировать такую сеть процессов, в которой функция каждого компонента состоит в том, чтобы помогать созданию или трансформации других компонентов сети. Как и в случае клетки, эта автопоэзная сеть также должна создавать собственную границу, которая составляет часть сети процессов, но в то же время определяет ее протяженность.

Чтобы найти подходящий математический аппарат для своей задачи, Франциско Варела изучил математические модели самоорганизующихся сетей, разработанные в кибернетике. Двоичные сети, изобретенные Мак-Каллоком и Питтсом в 40-е годы, не обеспечивали достаточного уровня сложности для моделирования автопоэзной сети4; однако оказалось, что более поздние модели сетей — так называемые «клеточные автоматы» — идеально подходят для этой цели.

Клеточный автомат представляет собой прямоугольную решетку, состоящую из правильных квадратов, или клеток, — вроде шахматной доски. Каждая клетка может принимать несколько различных «значений», причем существует определенное число соседних клеток, способных влиять на нее. Паттерн, или состояние, всей решетки изменяется дискретно, в соответствии с набором правил перехода, которые вводятся для всех клеток одновременно. Обычно клеточные автоматы полностью детерминированы, но, как мы увидим ниже, в правила легко могут быть включены элементы случайности.

Эти математические модели называются автоматами, потому что изначально они были изобретены Джоном фон Нейманном для конструирования машин с возможностью самовоспроизведения. Хотя такие машины так и не были построены, фон Нейманн абстрактно и элегантно показал, что это, в принципе, возможно5. С тех пор молекулярные автоматы широко используются как для имитации природных систем, так и для изобретения большого количества математических игр6. Наверное, самым широко известным примером является игра «Жизнь», в которой каждая клетка может иметь одно из двух «значений», например «черное» или «белое», а последовательность состояний определяется тремя простыми правилами — «рождением», «смертью» и «выживанием». Входе игры возникает поразительное разнообразие паттернов. Некоторые из них «передвигаются»; другие сохраняют стабильность; третьи колеблются или ведут себя еще более сложным образом8.

Клеточные автоматы использовались профессиональными математиками и любителями не только для изобретения многочисленных игр; не менее пристально их изучали как математический инструмент для научных моделей. В силу их сетевой структуры и способности работать с большими количествами дискретных переменных, эти математические формы были вскоре признаны и приняты в качестве замечательной альтернативы дифференциальным уравнениям в области имитации сложных систем9. В некотором смысле эти два подхода — дифференциальные уравнения и клеточные автоматы — можно рассматривать как различные математические структуры, соответствующие двум отдельным концептуальным измерениям в теории живых систем — структуре и паттерну.

Имитация автопоэзных сетей

В начале 70-х Франциско Варела понял, что пошаговые последовательности клеточных автоматов идеальны для компьютерного моделирования и обеспечивают его мощным инструментом имитации автопоэзных сетей. И в 1974 году, совместно с Матураной и ученым-компьютерщиком Рикардо Урибе, Вареле удалось разработать требуемый компьютерный имитатор10. Их клеточный автомат состоит из решетки, в плоскости которой беспорядочно передвигаются «катализатор» и два типа элементов. Они взаимодействуют друг с другом таким образом, что в результате могут образоваться новые элементы обоих видов; одни могут исчезать, а другие связываются друг с другом, образуя цепи.

В компьютерных распечатках решетки «катализатор» помечается звездочкой (*). Элемент первого типа, присутствующий в больших количествах, называется «субстратом» и помечается кружком (о); элемент второго типа называется «звеном» и помечается кружком внутри квадрата ([0]). Существует три различных типа взаимодействий и преобразований: два субстрата могуn объединиться в присутствии катализатора, образуя звено; несколько звеньев могут «сцепиться», образуя цепь; любое звено, как свободное, так и входящее в цепь, может распасться снова на два субстрата. В результате некоторого количества преобразований цепь может замкнуться сама на себя.

Эти три типа взаимодействия символически изображаются так:



Точные математические предписания (так называемые «алгоритмы»), касающиеся того, когда и как происходят эти процессы, достаточно сложны. Они состоят из многочисленных правил передвижения различных элементов и их взаимодействий". Правила передвижения, например, включают следующие пункты:

Субстратам разрешено перемещаться только в незанятые участки(«дырки») решетки; в то же время катализаторам и звеньям разрешено вытеснять субстраты, перемещая их в соседние дырки. Катализатор, кроме того, может вытеснять свободные звенья.

Катализатор и звенья могут также меняться местами с субстратами и, таким образом, свободно проходить сквозь их массивы.

Субстраты — но не катализатор и не свободные звенья — могут пройти сквозь цепь и занять дырку, расположенную за ней (это имитирует полупроницаемые мембраны клеток).

Звенья, связанные в цепь, не могут передвигаться никак.

В рамках этих правил фактическое движение элементов и многочисленные подробности их взаимодействия — создание, сцепление и распад — выбираются случайным образом12. Когда запущена имитация на компьютере, генерируется сеть взаимодействий, включающая множество ситуаций случайного выбора, а следовательно, порождающая в свою очередь самые различные последовательности. Авторам удалось показать, что некоторые из этих последовательностей приводят к устойчивым автопоэзным паттернам.

Пример такой последовательности взят из их статьи и воспроизведен, в виде семи стадий, на рис. 9–1. В начальном состоянии (стадия 1) одна позиция решетки занята катализатором, а все другие — субстратами. На стадии 2 уже создано несколько звеньев, и, соответственно, теперь в решетке есть несколько дырок. На стадии 3 создано еще больше звеньев и некоторые из них образовали цепи. На стадиях 4–6 производство звеньев и формирование цепей продолжается, и на стадии 7 мы видим, что цепь связанных звеньев замкнулась на себя, охватив катализатор, три звена и два субстрата. Таким образом, цепь сформировала оболочку, проницаемую для субстрата, но не для катализатора. Как только случается такая ситуация, замкнутая цепь может стабилизироваться и превратиться в