Первооткрыватели. 100 научных сказок — страница 29 из 49

Признавая выдающиеся заслуги Дженнера, британский парламент наградил его премией в 30 000 фунтов стерлингов – по тем временам целым состоянием. В 1803 году в Лондоне были основаны Королевское Дженнеровское общество и Институт оспопрививания (Дженнеровский институт). Дженнер стал их первым, и пожизненным руководителем. Ему воздвигли памятники в бронзе и мраморе.



Понимая роль Фиппса в развитии метода оспопрививания, Дженнер подарил ему, к тому времени уже семейному человеку и отцу двух детей, коттедж, где сейчас располагается музей.

Умер Дженнер 26 января 1823 года в зените славы. Мальчик Джеймс Фиппс не получил и малой её доли, но будем помнить и о нём, потому что именно он, рискуя своей жизнью, спас многих людей от страшной опасности.

В настоящее время оспа полностью побеждена на планете Земля.

Дети по всему миру перестали умирать от «чёрного мора» благодаря мальчику Джеймсу и доктору Дженнеру.

Примечания для любопытных

Томас Бабингтон Маколей (1800–1859) – известный британский политик, историк и поэт.

Эдвард Энтони Дженнер (1749–1823) – знаменитый английский врач, разработавший первую безопасную вакцину против оспы.

Джеймс Фиппс – малоизвестный английский мальчик, который с риском для жизни испытал на себе новую вакцину доктора Дженнера. В течение жизни Джеймсу двадцать раз делали инъекцию смертельно опасной натуральной оспы, но он не заболел.

Иммунитет – невосприимчивость организма к какой-либо болезни.

Оспа, или чёрная оспа, – болезнь, вызванная вирусом оспы, от которой погибло множество людей во всем мире. Только в XX веке от неё умерло от 300 до 500 миллионов человек. Оспу удалось победить с помощью прививок, разработанных доктором Дженнером и испытанных мальчиком Джеймсом Фиппсом. С 1978 года страшная болезнь считается полностью ликвидированной на всей планете.

Хигасияма (1675–1710) – японский император, умерший от оспы. Чуть не потерял власть после истории с 47 ронинами – воинами-самураями, отомстившими за смерть своего господина Асано Наганори.

Мария II (1662–1694) – английская королева, умершая от оспы. Во время её правления был принят «Билль о правах 1689 года» – одна из главных частей британской конституции.

Иосиф I (1678–1711) – австрийский император, носивший титул императора Священной Римской империи, умерший от оспы. Умный и образованный правитель, терпимый к иноверцам. Дал протестантам Силезии свободу вероисповедания.

Луис I (1707–1724) – испанский король. Правил всего семь месяцев, после чего умер от оспы.

Петр II (1715–1730) – российский император. Внук Петра I Великого (1672–1725). Вступил на престол в 11 лет и умер от оспы в 14.

Иоганн Кеплер (1571–1630) – великий немецкий астроном, открыватель законов движения планет. Придворный астроном Рудольфа II (1552–1612), императора Священной Римской империи. Переболел в детстве оспой, которая чуть его не убила и ослабила зрение.

Сказка об электрике Максвелле и его ручном демоне

– Никки, расскажи нам про электричество, – попросила Галатея. – А то Андрей мне плохо объяснил, что такое ток.

– Я хорошо объяснил, это ты плохо поняла, – возразил её старший брат Андрей.

– Электрический ток – не простая штука, – усмехнулась королева Никки, которая приехала в гости к принцессе Дзинтаре и по традиции рассказывала новую историю её детям. – Электричество – настолько важная технология, что XX век часто называют «эпохой электричества». XIX век стал переломным между царством паровых машин и технологиями современности, основанными на бесчисленных электрических устройствах, компьютерах, космических ракетах и атомной энергии.

В превращении электричества из диковинки в движущую силу цивилизации важнейшую роль сыграл один человек, о котором я вам сейчас расскажу.

Природные электрические явления были хорошо известны даже первобытным людям. Например, молния и гром. Молния – это световая вспышка из-за разряда атмосферного электричества, а гром – его звуковое сопровождение.

– А какие ещё природные явления связаны с электричеством? – полюбопытствовала Галатея.

– Полярные сияния. Они генерируются потоками электронов и протонов, летящих от Солнца и попадающих в ловушку магнитосферы Земли. Это своего рода заземление космического электричества. Красивое свечение рождается, когда облака заряженных солнечных частиц, накопленные в радиационных поясах Земли, переполняют их и врезаются в нашу атмосферу.

Лучше вы сами вспомните какой-нибудь природный электрический феномен.

Дети задумались.

– Компас! – воскликнул Андрей. – Его стрелка направлена на северный магнитный полюс.

– Верно, – согласилась Никки. – Поворачивающаяся магнитная стрелка компаса связывает электрические явления на микроуровне и в глобальных масштабах Земли.

– Как так? – переспросила Галатея.

– Магнитные свойства металлической стрелки связаны с движением электронов в её атомах, а магнитное поле нашей планеты вызвано электрическими токами в реках расплавленного металла в центре Земли. И когда маленькая стрелка в прозрачной коробочке поворачивается на север, она соединяет эффекты микромира и планетарные процессы.

Андрей победно посмотрел на Галатею: «Какой замечательный пример я нашёл!» Та сердито покраснела и выпалила:

– А меня часто жалят электрические разряды, когда я надеваю шерстяной свитер или трогаю металлическую дверцу автомобиля!

– Отлично! – Никки похвалила Галатею. – Трение, например, янтаря о шерсть вызывает электризацию – из-за этого к янтарю притягиваются мелкие бумажки. Данное явление стали использовать в XIX веке, создавая электрофорные машины, которые накапливали заряд на больших металлических шарах.

– Я видела молнии между такими шарами! – крикнула Галатея с сияющими глазами.

Никки одобрительно кивнула.

– К XIX веку многие учёные изучали электричество и магнетизм. Одни исследовали статические заряды на шарах, другие – электрические токи в проводах, и как они взаимодействуют с намагниченной стрелкой компаса. Но как связаны многочисленные электромагнитные явления друг с другом, оставалось загадкой.


В XIX веке в Шотландии в семье владельца большого поместья под Эдинбургом родился мальчик Джеймс. Он рос любознательным и был окружен разными научными диковинами того времени. До десяти лет получал домашнее образование, а затем пошёл в школу.

Позже юноша учился в Эдинбургском и Кембриджском университетах.

О напряжённом режиме учебы, который Максвелл сам себе устроил, свидетельствует следующий факт.

Получив сообщение об обязательном посещении утреннего богослужения в Кембридже, он сказал: «Я в это время только ложусь спать». Максвелл проявил себя настоящим гением в науке: занимался астрономией и устойчивостью колец Сатурна, созданием основ цветной фотографии и теорией движения молекул в газах – все физики мира знают «распределение Максвелла», которому подчиняется, например, распределение молекул газа по скоростям.

– Я слышал про «демона Максвелла»! – выпалил Андрей.

– Да, это забавное существо придумал Максвелл для одного из своих мысленных экспериментов. Берём сосуд с газом и делим его пополам стенкой, в которой всего одна крохотная дверца. Ставим возле неё швейцара-демона, молниеносно открывающего дверцу перед быстрыми частицами, которые летят из левой части сосуда в правую, и перед медленными молекулами, которые двигаются из правой части в левую, и захлопывающего дверь «перед носом» остальных частиц. Постепенно работа демона приведёт к тому, что справа накопится горячий газ с быстрыми молекулами, слева – холодный газ с медленными молекулами. Если сделать дверцу очень легкой, работа демона будет нетрудной. Зато сколько пользы она может принести! Хотя при этом нарушаются важные законы физики, что и сделало работу демона парадоксальной.

– Заставив работать демона Максвелла, можно сделать бесплатный холодильник! – засмеялась Галатея.

– И бесплатный кипятильник! – поддержал её Андрей.

– Учёные потратили немало сил на обсуждение хитроумного демона Максвелла, пока не поняли, что ни один демон даром работать не будет, всё равно потребует плату.


Максвелл очень увлёкся математической задачей описания электромагнитных явлений, но никак не мог связать покоящиеся заряды и токи в проводах. Он был хорошим математиком, любил создавать математические теории для природных явлений и говорил: «Если вы окажетесь где-то неправы, природа сама скажет вам об этом».

Много усилий Максвелл потратил на запись уравнений, которые описывали бы все известные магнитные и электрические явления. В конце концов ему это удалось!

– Все-все явления? – недоверчиво спросила Галатея.

– Все-все, причем не только известные, но и ещё не открытые.

Труды Максвелла, Герца и других физиков доказали, что электричество наблюдается в природе в самых разных формах: накапливается в атмосферных тучах и разряжается молниями при грозах, течёт в подземной расплавленной магме, заставляя компасы смотреть на север, и возникает в кипении звёздной материи. Тучи пепла электризуются не хуже дождевых облаков, поэтому извержения вулканов тоже сопровождаются мощными молниями. Электричество – удивительный природный феномен, который человек сумел приручить и превратил в самую распространенную технологию современной цивилизации.

– Что же такое электрический ток? – спросила Галатея.

– Это одновременно очень простой и сложный вопрос. В учебниках написано, что электрический ток – это направленное движение электронов по проводам. Более того, некоторые так и думают! Но, если щелкнуть выключателем на стене, электроны из него дойдут до люстры – предположим, что мы используем постоянный, то есть не меняющий своего направления ток – часов за десять.

– Как же так? – опешила Галатея. – Лампочка-то зажигается сразу!