Первооткрыватели. 100 научных сказок — страница 40 из 49

– пространство, свободное от реального вещества. Обладает целым рядом физических свойств и участвует во многих процессах микромира.

Стивен Хокинг (1942–2018) – знаменитый английский физик-теоретик. Известный популяризатор науки, в том числе, автор научно-популярных книг для детей, например «Джордж и тайны Вселенной».

Поль Дирак (1902–1984) – великий английский физик-теоретик. Один из создателей квантовой механики. Лауреат Нобелевской премии (1933).

Большой адронный коллайдер – самый большой в мире кольцевой ускоритель элементарных частиц, запущенный в 2008 году. Расположен на границе Швейцарии и Франции. Длина кольца – 26,7 км. Ускоритель снабжен сверхпроводящими магнитами.

Сказка о химике Бужигесе и об Африке, где водятся гориллы, крокодилы и атомные реакторы

Однажды вечером в доме Дзинтары появился гость – профессор Хао Шон, известный китайский учёный, старый друг и однокашник принцессы.

С детской непосредственностью Галатея спросила гостя за ужином:

– Какую сказку вы знаете?

– Сказку?! – Глаза профессора Хао стали по-европейски круглыми.

– Никки всегда рассказывает нам новые истории, когда приезжает. Даже её сын Майкл рассказывал, – сообщила Галатея об исторических прецедентах.

– И какую сказку вспомнил Майкл? – поинтересовался профессор.

– Про проблему географической долготы, как её решали часовщики и астрономы, – пояснил Андрей.

– Ах, вот какие сказки вы слушаете… – Гость призадумался, но быстро нашёлся: – Я тоже знаю одну историю, которая мне очень нравится. Я часто её рассказываю, и не только детям.

– О чём эта история? – спросила Галатея.

– Это история про Африку, где водятся гориллы, крокодилы и атомные реакторы… – начал свой рассказ профессор.

– Хао, не слушай этих нахалов, – сказала Дзинтара. – Давайте спокойно поужинаем, а затем уже приступим к сказкам.

– Хорошо, – согласился профессор. И дети навалились на десерт.

Наконец, пришло время для вечерней сказки.

Эта удивительная история началась во Франции, стране, которая три четверти своей электроэнергии получает от атомных электростанций. Поэтому туда возят урановую руду из Африки.

Повседневная работа французского химика-аналитика Бужигеса заключалась в исследовании образцов урановых руд. Однажды он обнаружил необычный изотопный состав урана, привезённого из страны Габон. Стандартное содержание урана-235 в природной смеси трёх изотопов урана – 234, 235 и 238 составляло 0,720 %.

– Ой! – перебила профессора Галатея. – А что такое изотопы урана?

– Хм… – Профессор задумался, как посложнее ответить на простой вопрос. – Изотопы урана… Уран отличается от соседей по химической таблице Менделеева зарядом и массой…

– А что такое таблица Менделеева? – снова перебила Галатея.

Профессор понял, что ему придётся отвечать по всей строгости научных сказок, и стал объяснять, размахивая руками:

– Ядра атомов каждого элемента: кислорода, железа, урана – состоят из двух типов частиц: нейтральных и заряженных. Нейтральные частицы зовут нейтронами, а заряженные – протонами.

Химические свойства элемента зависят от количества протонов в ядре, заряд которого нейтрализуется таким же числом отрицательно заряженных электронов на орбитах вокруг ядра. А вот количество нейтронов в ядрах может меняться. Это почти не влияет на химические свойства элементов.

Если исследовать природный уран, добытый в Африке и в других местах на планете, мы увидим, что все ядра урана одинаковы по количеству протонов, но не все одинаковы по числу нейтронов: некоторые ядра содержат больше нейтронов, другие меньше. Разные по массе ядра урана называются разными изотопами урана. Уран-235 – это уран, в котором 92 протона и 143 нейтрона, а ядро урана-238 имеет 92 протона и 146 нейтронов. Таблица Менделеева описывает все химические элементы, найденные в природе, и расставляет их по числу протонов в ядре, что задаёт их химические свойства.

Однако, если с точки зрения химии разные изотопы одного и того же элемента практически не отличаются, их ядерные свойства могут быть очень разными. Ядра разного состава обладают неодинаковой устойчивостью: есть стабильные или долгоживущие изотопы элементов, а есть очень нестабильные, радиоактивные. Все изотопы урана радиоактивны, но уран-235 распадается быстрее 238-го собрата. Поэтому его на Земле осталось мало. Вы знаете, откуда на Земле уран?

– Знаем! – хором закричали дети. – Оттуда же, откуда железо в нашей крови, – от взрыва Сверхновых звезд!

– Правильно! Взрыв Сверхновой – не шутка.

Мощный поток нейтронов обрушивается на ядра железа и других элементов из середины таблицы Менделеева, накопившихся в звезде к концу её жизни. И вот ядро железа получает в свои внутренности один «лишний» нейтрон, второй, третий… И если «лишние» нейтроны успеют претерпеть радиоактивный распад и превратятся в протоны, ядро изменит свой заряд, химические свойства и место в таблице Менделеева. Так из железа получается тяжелое ядро из конца менделеевской таблицы, например уран. При взрыве звезды разных изотопов урана образуется примерно поровну. Когда вспышка Сверхновой прекращается, выброшенные облака разлетаются по всем уголками космоса и остывают, оседая в местах, где формируются новые небесные тела, в том числе наше Солнце с Землей и другими планетами. Так уран с других звёзд попал в Солнечную систему. Поскольку уран нестабилен, со временем его на Земле становится все меньше, причём более короткоживущего урана-235 почти совсем не осталось, только 0,720 %! И такая доля 235-го изотопа наблюдается во всех урановых рудах на Земле, а также в образцах лунного грунта и метеоритах. Данная величина зависит только от космической истории нашей Солнечной системы.

Со временем на Земле появились любознательные люди, которые по соотношению оставшихся изотопов урана и продуктов их распада смогли оценить возраст родной планеты. Они открыли, что, если стукнуть по ядру урана нейтроном, оно может развалиться на два осколка – ядра из середины таблицы Менделеева. Но такие дочерние ядра связаны крепче, чем ядро урана (по этой причине термоядерное горение в звездах не идет дальше железа), поэтому при делении урана будет выделяться излишек энергии! Крошечная доля энергии взрыва Сверхновой, запасенная когда-то в ядрах урана, может сейчас послужить нам на Земле! Тепло, выделяемое урановыми стержнями в атомном реакторе, нагревает воду, превращая её в пар, вращающий турбины электростанции (в этом смысле атомная электростанция отличается от тепловой лишь источником тепла). Когда люди овладели энергией деления ядер, они впервые смогли использовать энергию, рожденную не на Солнце, потому что все остальные источники энергии: нефть, газ, уголь и дрова – представляют собой энергию Солнца, аккумулированную в горючем материале, накопленном в течение долгой истории Земли.

Для работы атомной электростанции нужен, главным образом, 235-й изотоп урана. Его ядра более нестабильны, то есть соединены слабее, чем ядро урана-238; такое ядро можно поделить медленным нейтроном, причем с большой вероятностью. Быстрые нейтроны способны вызывать деление ядер и 235-го, и 238-го изотопов, но вероятности таких процессов малы.

Чаще всего природный уран перед загрузкой в реактор обогащают, специальным образом отсеивая часть атомов 238-го изотопа.

– Теперь вы понимаете, почему содержание 235-го изотопа в природном уране так важно?

– Понимаем! – ответил за двоих Андрей. – Но мы не понимаем другое: почему ядро урана-235 можно разделить медленным нейтроном, а 238-го нельзя? И почему вероятность поделить ядро медленным нейтроном больше, чем быстрым?

– Чтобы ответить на эти вопросы, наша сказка должна растянуться как минимум на полгода, – улыбнулся профессор Хао. – В этом случае она будет называться «Курс ядерной физики».

– Но скажите хотя бы, откуда берутся нейтроны для деления ядер урана? Ведь Сверхновая поблизости не взрывается!

– Это просто. При делении каждого ядра урана вылетает два или три новых нейтрона, и их можно использовать для того, чтобы вызвать деление соседних ядер. То есть сами ядра урана при развале порождают нейтроны, которые используются для развала других ядер. Это называется цепной ядерной реакцией.

Профессор сделал вопросительную паузу, но новых детских вопросов не последовало.

Итак, согласно измерениям Бужигеса, процент урана-235 в исследованной им партии руды составлял не 0,720 %, а всего 0,717 %. Речь идёт о разнице в три тысячных процента! Но Бужигес оказался внимательным человеком, придавшим этой «недостаче» большое значение. Выходит, в давние времена кто-то в Африке жег урановое топливо в ядерных реакторах и израсходовал часть драгоценного 235-го изотопа.

Галатея и Андрей взволнованно переглянулись, и Хао довольно улыбнулся.

– Наверное, вы подумали про древних инопланетян?

В Африку снарядили экспедицию, которая обнаружила, что изменение изотопного состава в урановой жиле в Габоне вызвано работой древних ядерных реакторов, которые существовали почти 2 миллиарда лет назад и изменили изотопный состав урановой жилы.

Африканские атомные реакторы – их в Габоне открыли около двух десятков – оказались созданы не инопланетянами, а самой природой. Два миллиарда лет назад содержание в урановой жиле легкоделящегося урана-235 достигало 3 %. Кроме того, урановая жила в Габоне располагалась возле речки, а вода является естественным замедлителем нейтронов.

– Это что такое?

– Нейтроны, рождающиеся при делении ядер, быстрые. А делить ядра урана-235, как мы помним, лучше медленными. Поэтому, чтобы организовать цепную реакцию, родившиеся нейтроны нужно замедлить – уменьшить их скорость. Таким замедлителем в реакторах, созданных человеком или природой, может служить вода.

Когда-то на отмели африканской речки распад ядер урана в природной жиле рождал нейтроны, они уменьшали свою скорость, проходя через мокрый грунт, и делили другие ядра урана-235, вызывая новые распады. В результате урановая жила метровой толщины в течение получаса разогревалась до тепловой мощности в сотню киловатт…