Первые три минуты — страница 12 из 47

нтенна, равнялась 4080 МГц, или 4080 миллионов колебаний в секунду, что соответствовало длине волны 7,35 см.) Они просто объявили, что «измерения эффективной зенитной температуры шума… дали значение на 3,5 К выше, чем ожидалось», и избежали всяких упоминаний о космологии, за исключением фразы, что «возможное объяснение наблюдаемой избыточной температуры шума дано Дикке, Пиблзом, Роллом и Уилкинсоном в сопутствующем письме в этом же выпуске журнала.

Действительно ли микроволновое излучение, обнаруженное Пензиасом и Вилсоном, осталось от начала Вселенной? Прежде чем мы перейдем к рассмотрению экспериментов, осуществленных после 1965 года для того, чтобы разрешить этот вопрос, нам необходимо сначала спросить себя, что мы ожидаем теоретически, то есть каковы общие свойства излучения, которое должно заполнять Вселенную, если сегодняшние космологические идеи правильны? Этот вопрос приводит нас к рассмотрению того, что происходит с излучением при расширении Вселенной — не только во время нуклеосинтеза, в конце первых трех минут, но и на протяжении эонов[19], прошедших с тех пор.

Радиоантенна в Принстоне.

Фотография первой установки в Принстоне, на которой получено доказательство существования фона космического излучения. Маленькая рупорная антенна водружена раструбом вверх на деревянную платформу. Уилкинсон стоит под антенной несколько справа: Ролл, почти заслоненный аппаратурой стоит прямо под антенной. Блестящий цилиндр с конической верхушкой является частью криогенного оборудования, использовавшегося для создания контрольного источника на жидком гелии, излучение которого могло сравниваться с излучением от неба. Этот эксперимент подтвердил существование фона излучения с температурой 3 К на длине волны более короткой, чем та, которую использовали Пензиас и Вилсон (фотография Принстонского университета).


Нам будет очень полезно отказаться сейчас от классической картины излучения в терминах электромагнитных волн, которую мы до сего момента использовали, и принять более современную «квантовую» точку зрения, согласно которой излучение состоит из частиц, известных как фотоны. Обычная световая волна содержит огромное количество фотонов, летящих вместе в одном направлении, но если бы мы очень точно измерили энергию, переносимую рядом волн, то обнаружили бы, что она всегда есть кратное определенной величины, которую называют энергией отдельного фотона. Как будет видно, энергия фотона, вообще говоря, довольно мала, так что в большинстве практических случаев кажется, будто электромагнитная волна может иметь какую угодно энергию. Однако взаимодействие излучения с атомами и атомными ядрами обычно происходит с отдельным фотоном в данный момент времени, и при изучении таких процессов необходимо предпочесть волновому описанию описание с помощью фотонов. Фотоны имеют нулевую массу и нулевой электрический заряд, но, тем не менее, они вполне реальны — каждый из них несет определенные энергию и импульс и даже определенным образом вращается вокруг своего направления движения[20].

Что происходит с отдельным фотоном, пока он путешествует сквозь Вселенную? Ничего особенного, если только подразумевается сегодняшняя Вселенная. Свет от объектов, удаленных чуть не на 10 миллиардов световых лет, по-видимому, прекрасно доходит до нас. Значит, какая бы материя ни присутствовала в межгалактическом пространстве, она должна быть достаточна прозрачна, чтобы фотоны смогли путешествовать в течение времени, составляющего значительную часть возраста Вселенной, не будучи рассеянными или поглощенными.

Однако красные смещения далеких галактик говорят нам, что Вселенная расширяется, так что ее составные части должны были быть когда-то более сжатыми, чем сейчас. Температура произвольной жидкости в общем случае растет, когда жидкость сжимается, поэтому мы можем также заключить, что вещество Вселенной было в прошлом много горячее. В действительности, мы полагаем, был период времени, который, как мы увидим, длился, вероятно, в течение первых 700 000 лет существования Вселенной, когда содержимое Вселенной было столь горячим и плотным, что не могло еще собраться в звезды и галактики, и даже атомы были все еще разбиты на составляющие их ядра и электроны.

В этих мало приятных условиях фотон не мог путешествовать на заметные расстояния без помех, как он может это делать в сегодняшней Вселенной. Фотон должен был находить на своем пути огромное количество свободных электронов, которые могли эффективно рассеивать или поглощать его[21]. Если фотон рассеивается электроном, то он в общем случае либо отдает немного энергии электрону, либо получает от него немного энергии в зависимости от того, имел ли начальный фотон энергию больше или меньше, чем у электрона. «Среднее свободное время», в течение которого фотон может путешествовать, прежде чем он поглотится или испытает заметное изменение энергии, должно было быть очень малым, значительно меньше характерного времени расширения Вселенной. Соответствующее среднее свободное время для других частиц (электронов и атомных ядер) должно было быть еще короче. Таким образом, хотя в определенном смысле Вселенная вначале расширялась очень быстро, для отдельного фотона, электрона либо ядра это расширение занимало значительное время, такое, которого было достаточно для того, чтобы каждая частица многократно рассеялась, или поглотилась, или вновь испустилась.

Предполагается, что любая система такого рода, в которой отдельные частицы имеют время для многократных взаимодействий, приходит в состояние равновесия. Количество частиц, характеристики которых (положение, энергия, скорость, спин и др.) находятся в определенном интервале значений, должно стать таким, чтобы каждую секунду из этого интервала выбивалось и вносилось обратно равное число частиц. Таким образом, свойства подобной системы определяются не какими бы то ни было начальными условиями, а лишь условием достижения равновесия. Конечно, «равновесие» здесь не означает, что частицы замерзли — каждая из них непрерывно ударяется о своих соседей. Скорее, равновесие статистическое — это распределение частиц по положению, энергии и т. п., причем такое распределение, которое не меняется или меняется очень медленно.

Равновесие подобного статистического рода обычно называют «тепловым равновесием», так как такое состояние всегда характеризуется определенной температурой, которая должна быть одинакова во всей системе. В действительности, строго говоря, только в состоянии теплового равновесия и можно точно определить саму температуру. Мощная и глубокая ветвь теоретической физики, известная как статистическая механика, дает математические средства для расчета свойств любой системы в тепловом равновесии.

Достижение теплового равновесия происходит так, что это несколько напоминает предположительное действие механизма цен в классической экономике. Если спрос превышает предложение, то цена товаров будет расти, ограничивая эффективный спрос и поощряя увеличение производства. Если предложение превышает спрос, то цены падают, увеличивая эффективный спрос и приостанавливая дальнейшее производство. В обоих случаях спрос и предложение достигнут равенства. Точно так же, если имеется слишком много или слишком мало частиц с энергиями, скоростями и другими характеристиками в определенном интервале значений, то скорость, с которой они покидают этот интервал, будет больше или меньше скорости, с которой они попадают в него, пока не установится равновесие.

Конечно, механизм цен не всегда работает точно так, как это предполагается в классической экономике, но и здесь имеется аналогия — большинство физических систем в реальном мире весьма далеко от теплового равновесия. В центрах звезд имеется почти идеальное тепловое равновесие, так что мы можем с определенной уверенностью оценить, каковы там условия, но поверхность Земли ни в какой мере не близка к равновесию, и мы совершенно не уверены в том, будет завтра дождь или нет. Вселенная никогда не была в состоянии идеального теплового равновесия, так как помимо всего прочего она расширяется. Однако в ранний период, когда скорости рассеяния и поглощения отдельных частиц были много больше скорости космического расширения, Вселенную можно рассматривать как «медленно» переходящую от одного состояния почти идеального теплового равновесия к другому.

Решающим для всей аргументации в этой книге является то, что Вселенная когда-то прошла через состояние теплового равновесия. Согласно выводам статистической механики, свойства любой системы в тепловом равновесии полностью определяются, как только заданы температура системы и плотности нескольких сохраняющихся величин (о которых будет сказано чуть больше в следующей главе). Поэтому Вселенная имеет лишь очень ограниченные воспоминания о своих начальных условиях. Это грустно, если мы хотим реконструировать самое начало, но в то же время потеря компенсируется тем, что мы можем вывести ход событий с самого начала без слишком большого числа произвольных предположений.

Мы видели, что микроволновое излучение, открытое Пензиасом и Вилсоном, считается оставшимся от того времени, когда Вселенная находилась в состоянии теплового равновесия. Поэтому, чтобы понять, каковы ожидаемые свойства наблюдаемого фона микроволнового излучения, мы должны задать вопрос: каковы общие свойства излучения, находящегося в тепловом равновесии с веществом?

Случилось так, что именно этот вопрос исторически породил квантовую теорию и интерпретацию излучения в терминах фотонов. К 90-м годам девятнадцатого века стало известно, что свойства излучения в состоянии теплового равновесия с веществом зависят только от температуры. Более точно, количество энергии в единичном объеме такого излучения в любом заданном интервале длин волн дается универсальной формулой, содержащей только длину волны и температуру. Эта же формула дает количество излучения внутри ящика с непроницаемыми стенками, поэтому радиоастроном м