Первые три минуты — страница 28 из 47

Слабые взаимодействия — это те, которые ответственны за определенные процессы радиоактивного распада вроде распада свободного нейтрона или вообще за любую реакцию, включающую нейтрино. Как указывает их название, слабые взаимодействия значительно слабее электромагнитных или сильных взаимодействий. Например, при столкновении нейтрино с электроном при энергии один миллион электронвольт эта сила составляет примерно одну десятимиллионную (10-7) часть электромагнитной силы между двумя электронами, сталкивающимися при той же энергии.

Несмотря на слабость слабых взаимодействий, уже давно считается, что должна существовать глубокая связь между слабыми и электромагнитными силами. В 1967 году мною и независимо в 1968 году Абдусом Саламом была предложена теория поля, объединяющая эти две силы[52]. Эта теория предсказывает существование нового класса слабых взаимодействий, так называемых нейтральных токов, что было экспериментально подтверждено в 1973 году. Теория получила дальнейшую поддержку в результате открытия в 1974 году целого семейства новых адронов. Ключевая идея теории состоит в том, что природа имеет очень высокую степень симметрии, которая связывает различные частицы и силы друг с другом, но затемняется в обычных физических явлениях. Теории поля, используемые с 1973 года для описания сильных взаимодействий, принадлежат к тому же математическому типу (неабелевы калибровочные теории), и сейчас многие физики верят, что калибровочные теории могут обеспечить единую основу для понимания всех сил в природе: слабых, электромагнитных, сильных и, возможно, гравитационных. Эта точка зрения подтверждается свойством единых калибровочных теорий, о котором догадывались Салам и я, но которые впервые доказали в 1971 году Герард Тофт и Бенжамен Ли: вклады сложных фейнмановских диаграмм, хотя и кажутся бесконечными, дают конечные результаты для вероятностей всех физических процессов.

Как отметили в 1972 году Д.А. Киржниц и А.Д. Линде из Физического института им. Лебедева в Москве, важным моментом в калибровочных теориях, относящимся к изучению ранней Вселенной, является то, что в таких теориях возникает фазовый переход, нечто вроде замерзания, при «критической температуре» 3000 миллионов миллионов градусов (3 × 1015 К). При температуре ниже критической Вселенная была такая же, как сейчас: слабые взаимодействия были слабыми и короткодействующими. При температуре выше критической стало явным существенное единство слабых и электромагнитных взаимодействий: слабые взаимодействия подчинялись тому же закону обратных квадратов, что и электромагнитные взаимодействия, и имели примерно ту же интенсивность.

Здесь полезна аналогия с замерзающей в стакане водой. Выше точки замерзания жидкая вода проявляет высокую степень однородности: вероятность обнаружить молекулу воды в одной точке внутри стакана такая же, как в любой другой точке. Однако, когда вода замерзает, эта симметрия между различными точками в пространстве частично теряется: лед образует кристаллическую решетку, причем молекулы воды занимают определенные, регулярно расположенные в пространстве положения, и вероятность обнаружения молекул воды где-нибудь в другом месте почти равна нулю. Подобным образом, когда Вселенная «замерзает», как только температура падает ниже 3000 миллионов миллионов градусов, теряется симметрия, но не пространственная однородность, как в нашем стакане со льдом, а симметрия между слабыми и электромагнитными взаимодействиями.

Оказывается, можно провести аналогию еще дальше. Как знает каждый, когда вода замерзает, она обычно образует не идеальный кристалл льда, а нечто значительно более сложное: огромную путаницу кристаллических областей, разделенных разными типами кристаллических нерегулярностей. Не образовались ли подобные области и при замерзании Вселенной? Живем ли мы в одной из таких областей, где симметрия между слабыми и электромагнитными взаимодействиями нарушилась определенным образом, и обнаружим ли мы когда-нибудь другие области?[53]

До сих пор наше воображение довело нас до температуры 3000 миллионов миллионов градусов, и мы имели дело с сильными, слабыми и электромагнитными взаимодействиями. Что можно сказать о другом известном в физике важном классе взаимодействий — о гравитационном взаимодействии? Гравитация, конечно, играет в нашей истории важную роль, так как она контролирует связь между плотностью Вселенной и скоростью ее расширения. Однако до сих пор не обнаружено, что тяготение имело какое-то влияние на внутренние свойства любой части ранней Вселенной. Это объясняется чрезвычайной слабостью силы тяготения; к примеру, сила тяготения между электроном и протоном в атоме водорода слабее электрической силы на множитель 10 в 39-й степени.

(Одной из иллюстраций слабости гравитации является процесс образования частиц в гравитационных полях. Леонард Паркер из университета в Висконсине отметил, что «приливные» эффекты гравитационного поля Вселенной были достаточно велики в момент времени около одной миллионной миллионной миллионной миллионной доли секунды 10-24 с) после начала, чтобы породить из пустого пространства пары частица-античастица. Однако при тех температурах гравитация была все же так слаба, что число частиц, образованных таким способом, составило пренебрежимо малую добавку к частицам, уже находившимся в тепловом равновесии.)

Тем не менее мы можем, по крайней мере, вообразить момент времени, когда гравитационные силы были столь же велики, как и сильные ядерные взаимодействия, обсуждавшиеся выше. Гравитационные поля порождаются не только массой частиц, но и всеми формами энергии. Земля вращается вокруг Солнца несколько быстрее, чем она вращалась бы, если бы Солнце было не таким горячим, так как энергия солнечного тепла дает небольшой вклад в источник тяготения. При сверхвысоких температурах энергия частиц в тепловом равновесии может стать так велика, что силы тяготения между ними станут такими же большими, как и любые другие силы. Можно оценить, что такое положение будет достигнуто при температуре около 100 миллионов миллионов миллионов миллионов миллионов градусов (1032 К).

При этой температуре должны происходить всевозможные странные вещи. Не только гравитационные силы будут большими и образование частиц гравитационными полями обильным — сама идея «частицы» не будет еще иметь какого-то смысла. «Горизонт», т. е. то расстояние, из-за которого невозможно принять никакого сигнала, будет в этот момент времени ближе, чем одна средняя длина волны частицы в тепловом равновесии. Вольно выражаясь, каждая частица будет почти такой же большой, как вся наблюдаемая Вселенная!

Мы слишком мало знаем о квантовой природе гравитации даже для того, чтобы делать разумные предположения об истории Вселенной до этого времени. Можно сделать грубую оценку, что температура 1032 К была достигнута где-то через 10-43 секунды после начала, но, на самом деле, неясно, имеет ли эта оценка какой-то смысл. Таким образом, хотя мы, быть может, и приподняли другие завесы, остается все же одна завеса при температуре 1032 К, все еще заслоняющая от нашего взора более ранние времена.

Однако ни одна из этих неопределенностей не является существенной для астрономии в году от Рождества Христова тысяча девятьсот семьдесят шестом. Дело в том, что в течение всей первой секунды Вселенная, по-видимому, находилась в состоянии теплового равновесия, в котором количество и распределение всех частиц, даже нейтрино, определялись законами статистической механики, а не деталями их предыдущей истории. Когда мы сегодня измеряем распространенность гелия, или фон микроволнового излучения, или даже количество нейтрино, мы наблюдаем реликты состояния теплового равновесия, закончившегося в конце первой секунды. Насколько мы знаем, ничто из того, что мы можем наблюдать, не зависит от истории Вселенной до этого времени. (В частности, ничто из того, что мы сейчас наблюдаем, не зависит от того, была ли Вселенная изотропна и однородна до первой секунды, за исключением, возможно, самого отношения числа фотонов к числу ядерных частиц.) Это напоминает то, как если бы с большим старанием приготовили обед — свежайшие продукты, весьма заботливо выбранные специи, нежнейшие вина, — а затем все свалили в огромный котел, где это несколько часов кипело. Даже самому разборчивому едоку трудно было бы узнать, что ему подали.

Есть одно возможное исключение. Явление гравитации, как и явление электромагнетизма, может проявляться в форме волн, так же как и в более привычной форме статического действия на расстоянии. Два электрона в состоянии покоя отталкиваются друг от друга со статической электрической силой, зависящей от расстояния между ними, но если мы начнем дергать один электрон туда-сюда, то другой не будет чувствовать никакого изменения действующей на него силы до тех пор, пока новости об изменении расстояния не донесутся до него на электромагнитной волне. Едва ли нужно говорить, что эти волны движутся со скоростью света — они и есть свет, хотя и не обязательно видимый. Таким же образом, если бы какой-то неблагоразумный великан стал дергать туда-сюда Солнце, мы на Земле не чувствовали бы никакого эффекта в течение восьми минут, т. е. того времени, которое требуется волне, чтобы пробежать со скоростью света от Солнца к Земле. Это не световая волна, т. е. не волна колеблющихся электрического и магнитного полей, а гравитационная волна, когда колебания происходят в гравитационных полях. Как и в случае электромагнитных волн, мы объединяем гравитационные волны всех длин термином «гравитационное излучение».

Гравитационное излучение взаимодействует с веществом значительно слабее электромагнитного излучения или даже нейтрино. (Поэтому, хотя мы достаточно уверены в теоретическом обосновании существования гравитационного излучения, по-видимому, провалились самые энергичные попытки детектировать гравитационные волны от любого источника