Отсюда, число фотонов dN в единице объема излучения черного тела, приходящееся на узкий интервал длин волн от λ до λ + dλ, равно
Полное число фотонов в единице объема 1 см3 равно тогда
а средняя энергия фотона:
Рассмотрим теперь, что происходит с излучением черного тела в расширяющейся Вселенной. Предположим, что размер Вселенной изменился в f раз; например, если Вселенная удваивается в размере, то f = 2.
Как мы видели в главе II, длины волн изменяются пропорционально размеру Вселенной и будут иметь новое значение
После расширения плотность энергии du' в новом интервале длин волн от λ' до λ' + dλ' меньше первоначальной плотности энергии du в старом интервале длин воли от λ до λ + dλ по двум различным причинам.
1. Так как объем Вселенной увеличился в f3 раз, то до тех пор, пока не рождалось и не уничтожалось никаких фотонов, их число в единице объема уменьшилось в f3 раз, т. е. изменилось на множитель 1/f3.
2. Энергия каждого фотона обратно пропорциональна его длине волны и поэтому уменьшилась на множитель 1/f. Отсюда следует, что плотность энергии уменьшилась на общий множитель 1/f3, умноженный на 1/f, то есть на множитель 1/f4:
Если мы теперь перепишем эту формулу, введя новую длину волныλ', то она примет вид
Но это в точности та же формула, что и старая формула для du, выраженная черезλ и dλ, за исключением того, что Т заменяется новой температурой
Следовательно, мы заключаем, что свободно расширяющееся излучение черного тела продолжает описываться формулой Планка, но с температурой, падающей обратно пропорционально масштабу расширения.
ДОПОЛНЕНИЕ 5. МАССА ДЖИНСА
Для того чтобы сгусток вещества образовал гравитационно связанную систему, необходимо, чтобы его гравитационная потенциальная энергия превысила внутреннюю тепловую энергию. Гравитационная потенциальная энергия сгустка радиуса r и массы M порядка
Внутренняя энергия в единице объема пропорциональна давлению p, так что полная внутренняя энергия порядка
Следовательно, гравитационное сжатие будет преобладать, если
Но для заданной плотности р мы можем выразить r через М с помощью соотношения
Условие гравитационного стягивания можно поэтому переписать в виде
или, иными словами,
где MD (с точностью до несущественного численного множителя) — величина, известная как масса Джинса:
Например, как раз перед рекомбинацией водорода плотность массы равнялась 9,9 × 10-22 г/см3 (см. математическое допол-нение 3), а давление равнялось[58]:
Поэтому масса Джинса была равна
где MΘ — масса Солнца. (Для сравнения масса нашей Галактики равна примерно 1011МΘ.) После рекомбинации давление[59] упало в 109 раз, так что масса Джинса уменьшилась до
Интересно, что это примерно равно массе больших шаровых скоплений внутри нашей Галактики.
ДОПОЛНЕНИЕ 6. ПЛОТНОСТЬ И ТЕМПЕРАТУРА НЕЙТРИНО
До тех пор, пока сохраняется тепловое равновесие, полное значение величины, называемой «энтропией», остается фиксированным. В достаточном для наших целей приближении энтропия S в единице объема при температуре Т дается формулой
где NT — эффективное число разновидностей частиц, находящихся в тепловом равновесии, пороговая температура которых ниже Т. Для того чтобы удержать полную энтропию постоянной, S должна быть пропорциональна обратному кубу размера Вселенной. Это значит, что если R есть расстояние между любой парой типичных частиц, то
Как раз перед аннигиляцией электронов и позитронов (при температуре около 5 × 109 К) нейтрино и антинейтрино уже вышли из теплового равновесия с остальным содержимым Вселенной, так что единственными частицами, имевшимися в больших количествах в равновесии, были электрон, позитрон и фотон. Мы видим, что согласно табл. 1 полное эффективное число разновидностей частиц перед аннигиляцией составляло[60]
После аннигиляции электронов и позитронов в четвертом кадре единственными частицами, которые остались в равновесии в большом количестве, были фотоны. Эффективное число разновидностей частиц равнялось поэтому просто
Из закона сохранения энтропии следует, что
Это значит, что тепло, выделившееся при аннигиляции электронов и позитронов, увеличило величину TR на множитель
Перед аннигиляцией электронов и позитронов температура нейтрино Tν была такой же, как и температура фотонов Т. Но после этого Т просто падала как 1/R, так что для всех последующих моментов времени произведение TνR равнялось значению TR перед аннигиляцией.
Отсюда заключаем, что после окончания процесса аннигиляции температура фотонов оказалась выше температуры нейтрино в
Нейтрино и антинейтрино, даже хотя они и не находятся в тепловом равновесии, дают важный вклад в космическую плотность энергии. Эффективное число разновидностей нейтрино и антинейтрино равно[61] 7/2, или 7/4 от эффективного числа разновидностей фотонов. (Имеются два спиновых состояния фотона.) В то же время четвертая степень температуры нейтрино меньше, чем четвертая степень температуры фотонов, на множитель (4/11)4/3. Следовательно, отношение плотности энергии нейтрино и антинейтрино к плотности энергии фотонов
Закон Стефана-Больцмана (см. главу III) утверждает, что при температуре фотонов Т плотность энергии фотонов
Следовательно, полная плотность энергии после электрон-позитронной аннигиляции равна
Мы можем перевести это в эквивалентную плотность массы, разделив на квадрат скорости света, и найдем тогда
ДОПОЛНЕНИЯ РЕДАКТОРА РУССКОГО ПЕРЕВОДА
ДОПОЛНЕНИЕ 1. КЛАССИЧЕСКАЯНЕРЕЛЯТИВИСТСКАЯ КОСМОЛОГИЯ
В предлагаемой книге Вайнберг для определения закона расширения Вселенной рассматривает шар, выделенный из безграничной среды. Гравитационное поле среды, окружающей шар, при этом не рассматривается: как известно, поле внутри сферически-симметричной оболочки равно нулю. Вывод Вайнберга правилен. Однако у читателя могут возникнуть сомнения, нет ли произвола в операции мысленного выделения шара[62]. Поэтому полезно дать вывод, также основанный на ньютоновой теории тяготения, в котором искусственное выделение шара не используется. Логическая простота при этом покупается ценой некоторого математического усложнения решения. Приводимый ниже вывод оказывается также весьма полезным в теории образования галактик при рассмотрении возмущений идеального решения. Однако в этом дополнении мы не касаемся вопроса о возмущениях.
Итак, для определения закона расширения будем непосредственно рассматривать безграничную среду, ее гравитационный потенциал и движение.
Уравнение тяготения запишем в форме уравнения Пуассона:
где φ — потенциал гравитационного поля; G — гравитационная постоянная; ρ — плотность. Будем искать сферически-симметричное решение с φ, зависящим только от r = (х2 + у2 + z2)1/2. Тогда
Решение этого уравнения имеет вид:
Мы привыкли к тому, что потенциал равен нулю на бесконечности; для ограниченной совокупности масс это так и есть. В безграничной Вселенной, равномерно заполненной веществом, это не так, однако нет никаких причин отказываться от приведенного решения.
Давление, так же как и плотность, считаем не зависящим от координат. В уравнение движения сплошной среды входит градиент давления, но в данном случае эта величина равна нулю.
Общий вид уравнения движения сплошной среды:
Подставим сюда выражение закона Хаббла
и используем выражение (3) для φ(r) и то, что grad ρ = 0. Сократив r, получим:
Наконец, составим уравнение неразрывности:
Подставив сюда хаббловское выражение скорости (5), найдем, что не зависящая от координат (но зависящая от времени) плотность удовлетворяет уравнению
Система уравнений (6) и (8) полностью эквивалентна тем уравнениям, которые выписаны автором книги в дополнении 2. Для ее решения удобно поделить одно уравнение на другое. Тогда
Это уравнение легко представить в виде линейного уравнения относительно величины H2:
решение которого с заданными (измеренными в настоящее время) значениями Н0 и ρ0 нетрудно записать. Общее решение имеет вид (А — константа интегрирования):
я2 = V/3 + YGp- (и)
Подставляя сегодняшние значения Н0 и ρ0 получаем окончательно
что полностью описывает и прошлое (при ρ>ρ0) и будущее Вселенной. Еще одним интегрированием можно найти t(ρ) и тем самым связать Н иρ с t.
Однако мы не останавливаемся на этом. Нашей целью была демонстрация того, что не нужно искусственно выделять какой-то шар, рассматривать находящуюся на краю точку, делать правдоподобные, но не строгие предположения о том, что внешняя (бесконечная!) область не влияет на движение.
Выше были применены регулярные методы рассмотрения движения сплошной среды и ясные предположения о том, что ищется решение изотропное и однородное, т. е. такое, в котором равноценны все направления и все точки пространства. Изотропия следует из сферически-симметричного вида функции