По следам бесконечности — страница 18 из 37

Аналогичное преобразование нащупал и выдающийся русский физик Умов.

Анри Пуанкаре на основании опыта Майкельсона высказал предположение о предельном характере скорости света.

Но Лоренц в своих работах интересовался только электрическими явлениями. А Пуанкаре вполне допускал, что результат опыта Майкельсона может быть опровергнут последующими измерениями, да и вообще занимался главным образом математической стороной дела.

Впрочем, Пуанкаре, блестящий исследователь, талантливый математик и физик, глубокий, гибкий и смелый ум, ученый, способный к широким обобщениям, был очень близок к созданию теории относительности. Но ему помешали его философские воззрения. Пуанкаре считал, что математика и геометрия свободны от опыта, что любая область явлений может быть описана бесчисленным множеством различных эквивалентных друг другу логически безупречных теорий. К тому же Пуанкаре придерживался той точки зрения, что человеческий ум должен стремиться к освобождению от «тирании внешнего мира». Поэтому среди различных теорий ученый выбирает ту, которая представляется ему наиболее удобной. И Пуанкаре, стоявший буквально «на пороге» теории относительности, так и не сделал решающего шага. И, скорее всего, не сделал именно потому, что этот шаг, по его мнению, должен был привести отнюдь не к самой «удобной» теории.

Однако при этом Пуанкаре упускал самое главное: то, что решающее значение имеет не удобство научной теории, а ее соответствие реальной действительности.

Чтобы объединить все новые идеи и факты в единую физико-математическую теорию, надо было не только решиться поднять руку на традиционные научные представления и на здравый смысл, по и увидеть за новыми удивительными фактами действительные свойства реального мира.

Человеком, способным выполнить эту задачу, оказался Альберт Эйнштейн (1879–1955).

Можно не сомневаться в том, что, не будь Эйнштейна, теория относительности все равно появилась бы. Наш век породил немало блестящих физиков-теоретиков. Но в этот период всеми необходимыми качествами для разработки принципиально новой революционной физической теории обладал именно Эйнштейн. Определенную роль, разумеется, сыграли не только личные особенности и оригинальный талант ученого, но и благоприятное стечение обстоятельств.

Интерес к познанию природы проявился у будущего «великого преобразователя естествознания», как назвал его В. И. Ленин, еще в детстве.

Мальчику было всего около пяти лет, когда его поразило поведение магнитной стрелки компаса, которая поворачивалась как бы сама собой, а не вследствие прямого воздействия.

— Я помню еще и сейчас, — или мне кажется, что я помню, — что этот случай произвел на меня глубокое и длительное впечатление, — рассказывал Эйнштейн уже в зрелом возрасте. — За вещами должно быть что-то еще, глубоко скрытое.

Ценнейшее качество исследователя — уметь видеть в обычном необычное. А для этого он, как это ни покажется странным, должен обладать способностью удивляться. Эта способность, но мнению известного советского физика академика Мигдала, необходима физику или математику не меньше, чем художнику или поэту.

Не зря Альберт Эйнштейн не раз подчеркивал, что ему посчастливилось повзрослеть, прежде чем он потерял способность удивляться.

Случай с компасом уже с детства подтолкнул Эйнштейна к размышлениям о «пустом» пространстве и его скрытых свойствах. И, возможно, впоследствии, при создании общей теории относительности, сказались и эти детские переживания.

Но, может быть, самую важную роль в выборе Эйнштейном своего научного пути сыграл учебник геометрии, с которым он познакомился в двенадцатилетнем возрасте:

— Я пережил еще одно чудо, — вспоминал Эйнштейн. — Источником его была книжечка по эвклидовой геометрии на плоскости.

Вскоре Эйнштейн заинтересовался и научно-популярной литературой и, благодаря этому, познакомился с многими животрепещущими проблемами естествознания того времени.

Существенную роль в формировании Эйнштейна как ученого и мыслителя несомненно сыграл и рано проявившийся интерес к философским проблемам и связанное с этим самостоятельное ознакомление с трудами многих выдающихся философов.

— Я скорее философ, чем физик, — неоднократно говорил Эйнштейн своему ближайшему сотруднику Леопольду Инфельду.

Уже с шестнадцати лет он начал задумываться над вопросом о скорости распространения света, а затем и над результатами опыта Майкельсона.

— Нет сомнения, — писал впоследствии Эйнштейн Бернарду Джеффу, — что опыт Майкельсона оказал значительное влияние на мою работу, поскольку он укрепил мою уверенность в правильности принципа специальной теории относительности. С другой стороны, я был почти полностью убежден в правильности этого принципа еще до того, как узнал об эксперименте и его результате.

Решающим и одним из наиболее плодотворных периодов в жизни Эйнштейна было время, когда, окончив Цюрихский политехникум, он устроился на работу в Берн в качестве технического эксперта патентного бюро.

«Составление патентных формул, — писал он спустя много лет, — было для меня благословением. Оно заставляло много думать о физике и давало для этого повод. Кроме того, практическая профессия — вообще спасение для таких людей, как я: академическое поприще принуждает молодого человека беспрерывно давать научную продукцию, и лишь сильные натуры могут при этом противостоять соблазну поверхностного анализа».

В 1905 году Эйнштейн опубликовал несколько статей в журнале «Анналы физики». В одной из них и была изложена частная, или специальная, теория относительности.

В основу этой теории Эйнштейн положил два фундаментальных постулата: принцип независимости скорости света от движения источника и утверждение о том, что все без исключения физические явления протекают совершенно одинаково во всех системах, движущихся друг относительно друга равномерно и прямолинейно.

Любопытно, что оба этих положения являются обобщением научных фактов, которые были известны и ранее— принципа относительности Галилея[10] и результата опыта Майкельсона.

Факты-то сами по себе были известны, но им придавалось ограниченное значение, и до Эйнштейна никто не решился принять их в качестве основополагающих, универсальных постулатов и построить на этом всеобъемлющую теорию.

Специальная теория относительности — это не только теория быстрых движений, позволяющая рассчитывать явления, происходящие при околосветовых скоростях. Это, по существу, принципиально новый взгляд на мир, резко отличающийся от классических представлений.

После появления теории Эйнштейна стало ясно, что окружающая природа устроена далеко не так просто, как кажется, что реальные явления могут противоречить нашим привычным представлениям.

Например, оказалось, что такие фундаментальные физические характеристики, как «масса», «длина» и «длительность», казавшиеся абсолютными и неизменными, в действительности относительны. С увеличением скорости движения масса любого тела растет, длины укорачиваются, а течение времени замедляется. Масса какого-нибудь протона, летящего со скоростью, приближающейся к световой, может, в принципе, превзойти массу целой галактики. Более того, выяснилось, что одни и те же физические процессы могут в одно и то же время протекать по-разному в зависимости от условий, в которых находится наблюдатель.

Специальная теория относительности была принципиально важным шагом в понимании свойств пространства и времени.

— Отныне пространство само по себе и время само по себе должны стать тенями и только особого рода их сочетание сохранит самостоятельность, — заявил известный математик Герман Минковский, лекции которого в свое время посещал студент Эйнштейн.

Минковский предложил использовать для математического выражения зависимости пространства и времени геометрическую модель — четырехмерное пространство-время. В этом пространстве но трем основным осям откладываются, как обычно, интервалы длины, по четвертой же оси — интервалы времени.

Разумеется, никакого четвертого пространственного измерения в нашем мире не существует. И все же было бы неверно думать, что четырехмерное пространство-время теории относительности — всего лишь формальный математический прием, позволяющий удобно описывать определенные физические процессы. Четырехмерное пространство-время отражает глубокие реальные связи между пространством и временем.

И поскольку это так, свойства четырехмерного пространства-времени нельзя не принимать во внимание при решении вопроса о пространственной бесконечности Вселенной.

Создание специальной теории относительности явилось революцией в физике, не меньшей по своему значению, чем коперниковская революция в астрономии.

Надо было обладать огромной научной смелостью и богатейшим воображением, чтобы не только усомниться в наиболее фундаментальных основах физики того времени, но и предложить принципиально новую теорию, не только опровергающую всеобщность и непогрешимость этих представлений, но и противоречащую обыденному здравому смыслу.

Видимо, уже при разработке специальной теории относительности существенную роль сыграл один из методических принципов Эйнштейна, которым он неизменно руководствовался до конца своих дней.

Это — «принцип постоянного сомнения». Великий физик был непримиримым противником всякого самодовольства и кичливости в вопросах научного познания, он всегда восставал против некритической веры в достижение «окончательных» результатов исследования природы.

«Им кажется, что я в таком удовлетворении взираю на итог своей жизни, — писал Эйнштейн вскоре после своего семидесятилетия 28 марта 1949 года другу своей юности Соло. — Но вблизи все выглядит совсем иначе. Там нет ни одного понятия, относительно которого я был бы уверен, что оно останется незыблемым, и я не убежден, нахожусь, ли вообще на правильном пути…»

Он также любил говорить:

— Всякий, кто попытается выступить в качестве авторитета в области Истины и Познания, потерпит жалкое фиаско под хохот богов.