Далеко не каждый исследователь природы в состоянии следовать этим мудрым принципам.
— Мало кто способен невозмутимо высказывать мнения, идущие вразрез с предрассудками окружающей среды, — был один из афоризмов Эйнштейна. — Большинство даже неспособно вообще прийти к таким мнениям.
Сам Эйнштейн обладал обеими этими способностями в полной мере.
И еще одна немаловажная черта Эйнштейна-исследователя. В отличие от многих физиков, целиком живущих в мире своих идей и порой не замечающих окружающего, он любил и понимал природу и умел ею наслаждаться. И удивлялся отсутствию этих качеств у других ученых.
— Мы провели вместе с семьей Кюри несколько дней отпуска в Энгодине, — рассказывал он, — но мадам Кюри ни разу не услышала, как поют птицы.
Значительное место в жизни великого физика занимала и музыка, любовь к которой он унаследовал от своей матери.
Должно быть, способность на время отвлекаться от очередных научных проблем, предоставляя тем самым свободу для плодотворной работы подсознания, так же необходима теоретику, как и умение сосредоточиваться на решении той или иной задачи, отрешаясь от всего окружающего.
Разумеется, все это лишь отдельные штрихи, не способные в полной мере воссоздать образ великого ученого. Но они, быть может, в какой-то мере поясняют, почему именно Эйнштейну оказалась по плечу грандиозная задача построения новой физики.
Изучение свойств пространства-времени стало одним из тех звеньев, которые привели Эйнштейна к созданию еще одной принципиально новой теории, получившей название общей теории относительности, теории, которая, по существу, занимается изучением геометрических свойств Вселенной.
Работа Эйнштейна «Основы общей теории относительности» объемом всего около 50 страниц была напечатана в начале 1916 года в «Анналах физики».
Это исследование по праву считается вершиной научной мысли физики первой половины XX века.
Хотя специальная и общая теория относительности и занимаются, казалось бы, различными вопросами, в идейном отношении в них много сходного.
Подобно специальной, общая теория относительности разрушает привычные классические представления об абсолютном характере некоторых фундаментальных физических понятий — на этот раз пространства и времени.
Однажды какой-то газетный репортер обратился к Эйнштейну с просьбой изложить суть его теории в одной фразе и так, чтобы это было понятно широкой публике.
— Раньше полагали, — немного подумав, ответил Эйнштейн, — что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время.
Между двумя теориями, о которых идет речь, есть и другое сходство: в основу общей теории относительности тоже положен некий исходный постулат, представляющий собой обобщение известного экспериментального факта — равенства гравитационной и инертной массы любого тела[11].
Этот факт был обобщен Эйнштейном в так называемый «принцип эквивалентности»: «невозможно отличить силу тяжести от силы инерции». А следовательно, движение в поле тяготения — равносильно свободному движению по инерции.
Если специальная теория относительности описывает физические процессы, протекающие в системах отсчета, движущихся относительно друг друга только равномерно и прямолинейно, то общая теория относительности снимает это ограничение. Ее уравнения справедливы и для систем отсчета, движущихся с ускорением.
На первый взгляд может показаться, что в основном исходном утверждении общей теории относительности заключено противоречие. Ведь хорошо известно, что движение но инерции — равномерно и прямолинейно, а движение под действием силы тяготения — ускоренно.
Да, с точки зрения классической физики все так и есть. Но дело в том, что согласно общей теории относительности все события, в том числе и движение тел, происходят не в обычном эвклидовом пространстве, а в искривленном пространстве-времени.
Любое материальное тело не просто находится в пространстве, но определяет его геометрические свойства, которые зависят, таким образом, от распределения масс. Вблизи любых тел пространство искривляется. Благодаря этому лучи света распространяются во Вселенной не по прямым, а по изогнутым линиям. В повседневной жизни мы этого практически не ощущаем, поскольку нам обычно приходится иметь дело со сравнительно небольшими расстояниями и незначительными массами. Однако при переходе к космическим масштабам и гигантским скоплениям вещества искривленность пространства приобретает существенное значение.
— Гравитационное поле, — говорил Эйнштейн, — полностью определяется массами тел.
При этом связь между веществом и свойствами пространства-времени не односторонняя, а взаимная.
«Массы определяют геометрические свойства пространства и времени, — замечает академик В. А. Фок, — а эти свойства определяют движение масс».
«Общая теория относительности, — подчеркивают Я. Зельдович и И. Новиков, — описывает тяготение как воздействие масс на свойства пространства и времени. В свою очередь, эти свойства пространства и времени влияют на движение тел и другие физические процессы».
В 1917 году А. Эйнштейн сделал первую попытку применить общую теорию относительности для описания пространственно-временной структуры Вселенной. Эта работа ознаменовала собой рождение новой области науки — релятивистской космологии.
Тем самым еще раз, но теперь на совершенно новой основе, была поставлена проблема бесконечности Вселенной. И в этой постановке она стала одной из грандиознейших проблем современного естествознания, затрагивающей не только самые глубокие закономерности окружающего нас мира, но и наиболее принципиальные вопросы познания природы человеком.
В основе ньютоновской космологии лежали три фундаментальных положения: о стационарности и однородности Вселенной и эвклидовости пространства. Вселенная Эйнштейна, модель которой была построена великим физиком в 1917 году на основе общей теории относительности, связана с отказом от эвклидовости пространства.
Пространство Вселенной Эйнштейна — это трехмерная замкнутая в себе и в то же время неограниченная сфера.
В релятивистской космологии пространство обычно рассматривается как метрическое пространство, то есть многообразие, между элементами которого определено отношение расстояния.
В обычном эвклидовом пространстве любая прямая, продолженная неограниченно, является бесконечной. Но в искривленных пространствах бесконечность и неограниченность — не одно и то же. Строго говоря, различие между бесконечностью и неограниченностью существует и в эвклидовом пространстве — бесконечность свойство метрическое, это количественная характеристика, а неограниченность относится к структурным, так называемым топологическим свойствам пространства.
Но в искривленном пространстве это различие становится особенно ощутимым. Такое пространство может быть неограниченным, то есть не имеющим «края», границы, и в то же время конечным, то есть замкнутым в себе.
— При распространении пространственных построений в направлении неизмеримо большого, — отмечал Бернгард Риман, впервые разработавший математическую модель таких пространств, — следует различать свойства неограниченности и бесконечности: первое из них есть свойство протяженности, второе — метрическое свойство.
— Что мы хотим выразить, — писал Эйнштейн, обладавший счастливым умением с помощью наглядных образов выражать самые абстрактные идеи, — говоря, что наше пространство бесконечно? Ничего другого, как то, что мы можем прикладывать одно к другому равные тела в каком угодно числе и при этом никогда не наполним пространство. Если мы представим себе много равных кубических ящиков, то мы согласно эвклидовой геометрии помещая их один на другой, один возле другого и один за другим, можем заполнить произвольно большую часть пространства, но такое построение никогда не кончится, всегда останется место, чтобы прибавить еще кубик. Вот что мы хотим выразить, говоря, что пространство бесконечно.
В качестве примера неограниченного и в то же время конечного пространства можно привести поверхность обычного трехмерного шара. Вообразим некое двумерное существо, скажем, предельно плоского муравья, живущего в этой поверхности. Передвигаясь по ней, он нигде не наткнется ни на какие границы. И в этом смысле поверхность шара неограниченна. Но если радиус шара конечен, то и площадь его поверхности тоже имеет конечную величину.
Представить себе трехмерную сферу так же трудно, как трудно было бы воображаемым плоским существам, живущим на шаровой поверхности, представить себе двумерную сферу. Ведь, хотя такая сфера и обладает двумя измерениями, она изогнута в трехмерном пространстве.
Что же касается ньютоновских постулатов однородности пространства и времени, то эйнштейновская космология не только принимала их в качестве исходного положения, но и накладывала еще более жесткое ограничение — требование изотропии. Эти постулаты получили наименование «космологического принципа».
Другая формулировка космологического принципа состоит в том, что средние значения всех физических величия по достаточно большому объему одинаковы для любых частей Вселенной.
— Вообразим, что мы разбили Вселенную на множество таких «элементарных» областей, что каждая из них содержит большое количество галактик, — говорит А. Зельманов. — Тогда однородность и изотропия означают, что свойства и поведение Вселенной в каждую эпоху одинаковы во всех достаточно больших областях и но всем направлениям. А одним из важнейших свойств однородного изотропного пространства является его постоянная кривизна.
Таким образом, эйнштейновская космология была космологией однородной и изотропной Вселенной.
Она, подобно классической физике, описывала стационарную Вселенную, то есть такую Вселенную, которая с течением времени не только не меняется в общих чертах, но в которой вообще нет каких-либо движений достаточно крупного масштаба и средняя плотность вещества не изменяется со временем.