По следам бесконечности — страница 28 из 37

И Густав Иоганнович все с тем же невозмутимым видом развертывает перед присутствующими поразительную картину.

Оказывается, в районе, где совершается катастрофическое сжатие, есть области, в которых время течет с бесконечно большой быстротой. Для наблюдателя (разумеется, гипотетического), оказавшегося в такой области, целая вечность от бесконечно далекого прошлого до бесконечно далекого будущего длилась бы всего лишь какое-нибудь мгновение. Иными словами, здесь нет ни будущего, ни настоящего, ни прошлого — фактически не существует времени.

В том же районе гравитационного коллапса можно указать и такие области, в которых пространство стягивается в точку, то есть фактически не существует пространства.

Есть также основания предполагать, что в области очень сальных гравитационных полей и, в частности, в районе коллапса, нарушается и свойство односвязности пространства.

Односвязность означает, что в нашем пространстве любой замкнутый контур может быть непрерывной деформацией стянут в произвольную точку, расположенную внутри этого контура. Другими словами, это означает, что в нашей Вселенной нет «оторванных» друг от друга кусков, разделенных непреодолимыми «пропастями».

А если пространство становится многосвязным, состоящим как бы из отдельных кусков, то в каждом из этих кусков течение времени может происходить независимо и в разных направлениях. Но в таком случае в момент перехода из одного «куска» в другой, если, разумеется, такой переход вообще возможен, наблюдатель обнаружил бы, что время вдруг потекло иначе, чем раньше, например, вспять.

В области коллапса возможен и такой случай, когда пространство теряет так называемое свойство ориентируемости, присущее нашему обычному пространству. Практически это означает, что наблюдатель, движущийся в таком пространстве по замкнутому контуру, вернувшись в исходную точку, мог бы обнаружить, что в результате «кругового» путешествия течение времени изменилось на обратное.

— Все эти явления, — заключает Наан, — на первый взгляд представляются парадоксальными. Но парадоксы возникают именно тогда, когда наука вплотную подходит к неизвестному. А познание неизвестного неизбежно влечет за собой переоценку привычных взглядов. Поэтому мы должны быть готовыми к тому, что многие положения, которые в настоящее время кажутся нам незыблемыми, а также некоторые законы, которые мы считаем «абсолютными» (например, закон сохранения), по мере дальнейшего развития наших знаний окажутся вовсе не такими уж «незыблемыми» и не столь «абсолютными». Но, разумеется, это не означает, что прежние законы будут начисто «отменены»: просто они окажутся частными, предельными случаями еще более общих законов.

— Вы говорите о новых идеях, которые относятся к геометрическим свойствам Вселенной, — спрашивает кто-то из присутствующих. — Вы имеете в виду какие-либо конкретные идеи?

— Лично меня привлекают идея, связанные с природой вакуума, — говорит Наан. — На мой взгляд, вакуум представляет собой не что иное, как бесконечно большой запас энергии одного знака, скомпенсированный энергией другого знака. Таким образом, вакуум — это как бы совокупность, единство противоположностей. Когда же из вакуума образуются другие формы материи, которые и составляют то, что мы называем Вселенной, эти противоположности разделяются. Возможно, вакуум и есть та «протосреда», из которой могут возникать все другие виды вещества и материи. И я думаю, что со временем на смену существующей физической картине мира, оперирующей всевозможными полями — электромагнитным, гравитационным и т. д. — придет вакуумная картина.

— Выходит, вакуум — это основа всего?

— Да, я думаю, что основой всего во Вселенной как раз и является вакуум. А все остальное не более, как «легкая рябь» на его поверхности. Очень может быть, что с этой точки зрения удастся объяснить такие явления, как рождение космических лучей высоких энергий, вспышки Сверхновых, образование радиогалактик или квазаров, а также начало расширения Метагалактики.

Лицо Наана принимает заговорщическое выражение:

— Скажу вам, но только по секрету… До сих пор исходили из предположения, что определяющую роль играют свойства материи (вещества, частиц, полей), а свойства пространства и времени являются вторичными, производными. Однако в принципе не исключена возможность, что в действительности все обстоит как раз наоборот: то есть свойства материи представляют собой не что иное, как проявление, как следствие определенных геометрических свойств пространственно-временного «каркаса»…

— Значит, теперь, — пытается резюмировать кто-то, — прежняя постановка вопроса «или-или» — или наша Вселенная конечна, пли бесконечна, устарела?

— Она устарела, — заметил Наан, — хотя бы вследствие результата, полученного Зельмановым. Об «относительности бесконечности»…

«Вселенная Зельманова»

Академик В. Фок, просмотрев эту работу, воскликнул:

— Да тут целых три докторские диссертации!

Речь шла об исследованиях Зельманова по неоднородной анизотропной Вселенной. Однако сам Зельманов, кандидат физико-математических наук, с защитой докторской не торопится. Считает, что по своим прежним результатам защищаться как-то уже неудобно, надо прежде получить новые.

Зельманов — человек чрезвычайно требовательный к себе, и решать подобные вопросы, разумеется, его право. Тем более, что дело в конце концов не в званиях, а в характере научных результатов. А результаты получены явно знаменательные.

Как мы уже говорили, сейчас вряд ли кто-либо всерьез сомневается в том, что гипотезы изотропии и однородности представляют собой лишь приближение к истинному положению вещей, быть может, не очень грубое, но все-таки приближение. Во всяком случае определенные следы уклонения от изотропии и однородности в движении и распределении галактик обнаруживают и астрономические наблюдения.

Особенно показательна анизотропия расширения — различие в темпе расширения Метагалактики по разным направлениям. Речь идет об измерениях скоростей разбегания галактик в зависимости от расстояния (так называемый параметр Хаббла). Современные наблюдения показывают, что этот параметр в зависимости от направления меняется приблизительно в полтора-два раза.

Правда, этот факт может быть истолкован двояко. Существует предположение, согласно которому наша Галактика входит в состав мощного скопления галактик, получившего название Сверхгалактики. И не исключена возможность, что анизотропия расширения объясняется вращением Сверхгалактики. В таком случае эта анизотропия относится лишь к Сверхгалактике. Но само существование Сверхгалактики уже свидетельствует о наличии известной неоднородности Вселенной.

Если же Сверхгалактики, как полагают некоторые астрономы, не существует, то тогда анизотропия параметра Хаббла есть анизотропия всей наблюдаемой части Вселенной.

И в том, и в другом случае однородной и изотропной Вселенной не получается.

Правда, некоторые исследователи все же придерживаются мнения, что в достаточно больших масштабах наблюдаемая Вселенная не обнаруживает заметных отклонений от однородности. Однако нельзя забывать, что мы располагаем пока еще довольно неполными сведениями о распределении материи в космосе.

Итак, нужна теория анизотропной неоднородной Вселенной. Нужна уже хотя бы для того, чтобы взглянуть с более общих и широких позиций на однородные изотропные модели.

Но, увы, уравнения, которые при этом получаются, слишком сложны, чтобы с ними удалось справиться современным математическим оружием. Да и фактов, на которые можно было бы опереться, слишком мало.

Эта ситуация волновала Зельманова на протяжении многих лет. И в конце концов он пришел к такому заключению: если решить желанные уравнения не удается — надо попытаться исследовать их качественно. Другими словами, не имея решений, выяснить их наиболее важные свойства. С помощью такого обходного маневра можно узнать немало интересного о поведении материи в анизотропной неоднородной Вселенной.

Удивительная эта все-таки наука — космология… Мы не в состоянии охватить своим взглядом пространство Вселенной, непосредственно увидеть все тонкости его строения. Но косвенно, с помощью соответствующих аналогий и различных мысленных моделей, с помощью математических построений, можем представить себе и такие объекты, с которыми никогда не встречались непосредственно в обыденной жизни, которых никогда не видели.

«К счастью мы обладаем измерительным инструментом, который не связан какими-либо границами тонкости, — говорил знаменитый физик. Макс Планк. — Это полет наших мыслей… мысленно мы можем заглянуть в атомное ядро, равно как и преодолеть космическое расстояние в миллионы световых лет».

И вот некоторые результаты, полученные Зельмановым.

Оказалось, например, что в неоднородной анизотропной Вселенной расширение в одних областях может сочетаться со сжатием в других, соседних областях пространства. А это значит, что наблюдаемое в настоящее время расширение отнюдь не обязательно является расширением всей нашей Вселенной.

Вполне возможно, что область расширения, внутри которой мы находимся, значительно превосходит ту часть Метагалактики, которая доступна современным наблюдениям, так как в противном случае к нам просачивалось бы жесткое ультрафиолетовое излучение, которое возникает в областях достаточно длительного сжатия.

При этом особенно интересно, что в теории анизотропной неоднородной Вселенной расширение не обязательно должно быть неудержимым, а сжатие — не обязательно катастрофическим до состояния сверхвысокой плотности. Есть и другие решения. И не исключено, что наблюдаемая часть Вселенной вообще никогда не проходила стадию плотности, близкой к ядерной, хотя в период перехода от сжатия к расширению плотность могла быть весьма высокой (например, порядка плотности белых карликов — около 106 г/см3).

И еще на одно любопытное обстоятельство обратил внимание Зельманов. В неоднородной Вселенной может оказаться неодинаковым темп течения времени в различных областях — ведь согласно общей теории относительности он зависит от концентрации материи. Значит, одни и те же физические процессы в различных областях Вселенной могут протекать по-разному.