— Нет, — отвечал голос. — Я не чудотворец, не жрец и не святой. Я — философ.
— Что это значит? — осведомился удивленный юноша. — Я никогда не слышал такого слова.
— Тогда послушай, — раздался голос. — В этом мире есть три сорта людей. Они похожи на тех, кто приходит на Олимпийские игры. Одни приходят для борьбы и состязаний. Другие покупать и продавать. Третьи приходят просто наблюдать. Эти — лучше всех. Так и в самой жизни: люди суетятся и становятся либо рабами славы, либо богатства. Мудрые же созерцают, они искатели истины, только к ней они и стремятся. Это и есть философы.
По вот наступил день, когда Пифагор предстал перед своими учениками без занавеса. Облаченный в белые льняные одежды, он держался величественно, говорил неторопливо, с достоинством.
— В чем сущность вещей? — начал он и после многозначительной паузы ответил: — В числах! В чем первооснова, первоначало всего сущего? В числах. Что определяет все качества и свойства вещей? Числа! Числа! И только числа! Число — первичный элемент всякой вещи, ее принцип. Вещи подражают числам. Конечны ли числа? Вне всякого сомнения. Число не может быть бесконечным. Ведь числа — всегда четные или нечетные. А бесконечное число не является ни четным, ни нечетным.
Пифагор снова выдержал многозначительную паузу и пытливо оглядел своих учеников, как бы приглашая их к беседе.
— Учитель, — осмелился спросить один из них. — Я слышал, что мудрецы из Милета утверждают, будто первоначало всего сущего — апейрон, материя, бесконечная и безграничная.
Пифагор, не торопясь с ответом, медленно прошелся перед своими слушателями. Потом весомо сказал:
— Первоначало — число… И оно — конечно.
— А беспредельное? — последовал вопрос. — Существует ли оно?
— Беспредельное — пустота, неограниченная и неощутимая. Отсутствие бытия, небытие. Пустота проникает извне через небесный свод внутрь Вселенной и разграничивает предметы, разделяет числа.
Пифагор помолчал, как бы оценивая впечатление, произведенное его словами, а затем продолжал назидательно:
— Число — олицетворение добра, а бесконечная пустота — олицетворение зла. Конечное и упорядоченное неизмеримо ценнее, чем бесконечное и неопределенное. В конечности — красота и совершенство. В безграничности — незавершенность и несовершенство. Следует преклониться перед конечным и питать отвращение к бесконечному.
В мистическом учении пифагорейцев сказалась одна из характерных особенностей древнегреческой науки. У греков впервые получил применение метод абстракции, то есть когда любой объект рассматривался лишь с точки зрения его пространственной формы, а от всех прочих свойств исследователь отвлекался.
Этот метод был выдающимся достижением человеческой мысли. Именно благодаря ему достигла небывалого уровня обобщения греческая геометрия.
Но операции с «чистыми формами» таят в себе опасность. Поскольку выполняются они не опытным путем, а с помощью одних только логических рассуждений, — может сложиться впечатление, что математические понятия существуют сами по себе, независимо от каких бы то ни было реальных материальных основ. Такая ситуация и в дальнейшем не раз складывалась в естествознании, приводя определенную часть ученых к глубоко ошибочным идеалистическим выводам о первичности духовного начала.
Пифагорейская мистика чисел была одним из первых идеалистических учений, возникших в результате безудержного абсолютизирования математических абстракций.
Бессмертные парадоксы
Как мы уже отмечали в начале этой книги, понятие бесконечного — одно из самых парадоксальных понятий, с которым когда-либо встречался человек.
Бесконечное противоречит повседневному жизненному опыту, противоречит очевидности, противоречит привычному здравому смыслу.
И только тот исследователь может достичь успеха в изучении бесконечности, который обладает способностью парадоксально мыслить, преодолевать гипноз привычных представлений, подниматься над обыденным здравым смыслом.
Опыт истории науки убедительно свидетельствует о том, что человек в своих научных исследованиях и в жизни следует одним и тем же принципам. Любой человек всегда остается самим собой, чем бы он ни занимался.
У древнегреческих мыслителей сходство между научными рассуждениями и обыденным мышлением обнаруживается с особенной отчетливостью. Не случайно многие античные философы и в жизни поступали вопреки общепринятому, вопреки утвердившемуся повседневному здравому смыслу. И, видимо, не случайно именно те мыслители, которые обнаруживали особую склонность к парадоксальному мышлению, отличались оригинальным отношен нем к жизни и необычным поведением, добивались наиболее значительных успехов в развитии философских представлений об окружающем мире, в том числе и в изучении бесконечности.
Яркий пример тому Эмпедокл (около 490 г. — 430 г. до н. э.) — один из выдающихся мыслителей древности. Он жил в Сицилии, пользовался величайшим уважением своих соотечественников и при желании мог бы запять высокое положение. Ему даже предлагали царский венец, но Эмпедокл, не раздумывая, отказался от столь заманчивой перспективы. И в то же время он вполне благосклонно относился к тому, чтобы его считали божеством.
Эмпедокл яростно обличал роскошь, но сам разгуливал в дорогих одеждах с золотой повязкой на голове.
А когда мудрецу наскучила жизнь, он рассчитался с ней весьма оригинальным способом — прыгнул в кратер вулкана Этна.
Судя по всему столь странный поступок Эмпедокла непосредственно вытекал из его философского учения, согласно которому ничто в мире не возникает из ничего и ничто не пропадает бесследно, а следовательно, мир бесконечен во времени.
Этот сицилийский мудрец писал:
Но и другое тебе я поведаю: в мире сем тленном
Нет никакого рожденья, как нет и губительной смерти.
Есть лишь смешенье одно с размешеньем того, что смешалось,
Что и зовут неразумно рождением темные люди.
Глупые! Как близорука их мысль, коль они полагают,
Будто действительно раньше не бывшее может возникнуть,
Иль умереть и разрушиться может совсем то, что было.
Ибо из вовсе не бывшего сущее стать не способно…
Но, пожалуй, самым большим оригиналом среди всех древнегреческих философов был Зенон Элейский (около 490 г. — 430 г. до н. э.), приемный сын и любимый ученик выдающегося мыслителя Парменида (конец VI века — V век до н. э.), человек, которому суждено было заложить подлинно научный фундамент исследования бесконечного.
Этому в немалой степени способствовало и доведенное у древних греков едва ли не до совершенства искусство спора. В публичных дискуссиях и состязаниях ораторов, где победа определялась прежде всего авторитетом логических доказательств и способностью убедить присутствующих, родилось и было отточено острое оружие: умение доказать свою правоту путем столкновения противоречивых доводов и посылок. Соперники изобретали впечатляющие аргументы, рассыпали перлы остроумия, старались подловить своего противника, заманить в ловушку, поставить его в безвыходное положение. Судьи тут же определяли победителя.
Да и сама греческая философия развивалась в условиях постоянных споров, острой полемики различных философских школ и направлений.
В отличие от Востока, где громадную, определяющую роль играла сила традиций и где мыслители и философы выступали в роли непогрешимых пророков, вещающих непререкаемые истины, греки выше всего ценили разум и были твердо убеждены в том, что все в мире может быть понято и исследовано с помощью чисто логических рассуждений и доказательств.
Благодаря этому греческие философы чувствовали себя во многом независимыми от предвзятых представлений об окружающем мире. Мысль их парила свободно и не страшилась даже таких утверждений, которые на первый взгляд могли показаться абсурдными.
Этот полет смелой мысли, а также приобретенная в бесчисленных спорах и диспутах привычка к парадоксальным рассуждениям и заключениям несомненно сыграли первостепенную роль в поразительных достижениях древнегреческой науки, в особенности математики, и, в частности, в изучении бесконечности.
За долгие годы занятий философией Зенон выработал в себе блестящую способность опровергать противника и посредством возражений ставить его в затруднительное положение, научился рассматривать один и тот же предмет с противоположных сторон.
— Без всестороннего и обстоятельного разыскания невозможно уразуметь истину, — говорил он.
Зенон обладал не только выдающимся умом, но и, пожалуй, лучше, чем кто бы то ни было, умел мыслить парадоксально — многие его рассуждения и заключения оказывались неожиданными даже для самых выдающихся мудрецов.
Эта удивительная способность к парадоксальным выводам и привела Зенона к его знаменитым апориям — одному из самых поразительных достижений человеческой мысли.
Во времена Зенона в древнегреческой математике и философии со всей остротой встал вопрос о свойствах пространства и времени, теснейшим образом связанный с представлениями о конечном и бесконечном. Вопрос ставился так: можно ли и до каких пор осуществлять процесс делимости тела, пространства и времени? Завершится ли когда-либо такой процесс или он будет продолжаться беспредельно?
Одна из первых концепций бесконечности была выдвинута выдающимся философом-материалистом Анаксагором (около 500 г. — 428 г. до н. э.), известным своей непримиримой борьбой с мистикой и религией.
Началом всего сущего Анаксагор считал «гомеомерии» — бесконечное число элементов материи. Их сочетания дают все многообразие вещей.
Процесс деления тела бесконечен, утверждал он, и потому нет смысла говорить о его конечном результате. Следовательно, не существует наименьших неделимых частиц. Число частиц, из которых состоит данная вещь, всегда можно увеличить.
«И в малом ведь нет наименьшего, по всегда есть меньшее. Ибо бытие не может разрешиться в небытие, но и в отношении к большому есть большее. И оно равно малому по количеству. Сама же по себе каждая вещь и велика и мала».