По следам бесконечности — страница 4 из 37

— Нет, — отвечал голос. — Я не чудотворец, не жрец и не святой. Я — философ.

— Что это значит? — осведомился удивленный юноша. — Я никогда не слышал такого слова.

— Тогда послушай, — раздался голос. — В этом мире есть три сорта людей. Они похожи на тех, кто приходит на Олимпийские игры. Одни приходят для борьбы и состязаний. Другие покупать и продавать. Третьи приходят просто наблюдать. Эти — лучше всех. Так и в самой жизни: люди суетятся и становятся либо рабами славы, либо богатства. Мудрые же созерцают, они искатели истины, только к ней они и стремятся. Это и есть философы.

По вот наступил день, когда Пифагор предстал перед своими учениками без занавеса. Облаченный в белые льняные одежды, он держался величественно, говорил неторопливо, с достоинством.

— В чем сущность вещей? — начал он и после многозначительной паузы ответил: — В числах! В чем первооснова, первоначало всего сущего? В числах. Что определяет все качества и свойства вещей? Числа! Числа! И только числа! Число — первичный элемент всякой вещи, ее принцип. Вещи подражают числам. Конечны ли числа? Вне всякого сомнения. Число не может быть бесконечным. Ведь числа — всегда четные или нечетные. А бесконечное число не является ни четным, ни нечетным.

Пифагор снова выдержал многозначительную паузу и пытливо оглядел своих учеников, как бы приглашая их к беседе.

— Учитель, — осмелился спросить один из них. — Я слышал, что мудрецы из Милета утверждают, будто первоначало всего сущего — апейрон, материя, бесконечная и безграничная.

Пифагор, не торопясь с ответом, медленно прошелся перед своими слушателями. Потом весомо сказал:

— Первоначало — число… И оно — конечно.

— А беспредельное? — последовал вопрос. — Существует ли оно?

— Беспредельное — пустота, неограниченная и неощутимая. Отсутствие бытия, небытие. Пустота проникает извне через небесный свод внутрь Вселенной и разграничивает предметы, разделяет числа.

Пифагор помолчал, как бы оценивая впечатление, произведенное его словами, а затем продолжал назидательно:

— Число — олицетворение добра, а бесконечная пустота — олицетворение зла. Конечное и упорядоченное неизмеримо ценнее, чем бесконечное и неопределенное. В конечности — красота и совершенство. В безграничности — незавершенность и несовершенство. Следует преклониться перед конечным и питать отвращение к бесконечному.

В мистическом учении пифагорейцев сказалась одна из характерных особенностей древнегреческой науки. У греков впервые получил применение метод абстракции, то есть когда любой объект рассматривался лишь с точки зрения его пространственной формы, а от всех прочих свойств исследователь отвлекался.

Этот метод был выдающимся достижением человеческой мысли. Именно благодаря ему достигла небывалого уровня обобщения греческая геометрия.

Но операции с «чистыми формами» таят в себе опасность. Поскольку выполняются они не опытным путем, а с помощью одних только логических рассуждений, — может сложиться впечатление, что математические понятия существуют сами по себе, независимо от каких бы то ни было реальных материальных основ. Такая ситуация и в дальнейшем не раз складывалась в естествознании, приводя определенную часть ученых к глубоко ошибочным идеалистическим выводам о первичности духовного начала.

Пифагорейская мистика чисел была одним из первых идеалистических учений, возникших в результате безудержного абсолютизирования математических абстракций.

Бессмертные парадоксы

Как мы уже отмечали в начале этой книги, понятие бесконечного — одно из самых парадоксальных понятий, с которым когда-либо встречался человек.

Бесконечное противоречит повседневному жизненному опыту, противоречит очевидности, противоречит привычному здравому смыслу.

И только тот исследователь может достичь успеха в изучении бесконечности, который обладает способностью парадоксально мыслить, преодолевать гипноз привычных представлений, подниматься над обыденным здравым смыслом.

Опыт истории науки убедительно свидетельствует о том, что человек в своих научных исследованиях и в жизни следует одним и тем же принципам. Любой человек всегда остается самим собой, чем бы он ни занимался.

У древнегреческих мыслителей сходство между научными рассуждениями и обыденным мышлением обнаруживается с особенной отчетливостью. Не случайно многие античные философы и в жизни поступали вопреки общепринятому, вопреки утвердившемуся повседневному здравому смыслу. И, видимо, не случайно именно те мыслители, которые обнаруживали особую склонность к парадоксальному мышлению, отличались оригинальным отношен нем к жизни и необычным поведением, добивались наиболее значительных успехов в развитии философских представлений об окружающем мире, в том числе и в изучении бесконечности.

Яркий пример тому Эмпедокл (около 490 г. — 430 г. до н. э.) — один из выдающихся мыслителей древности. Он жил в Сицилии, пользовался величайшим уважением своих соотечественников и при желании мог бы запять высокое положение. Ему даже предлагали царский венец, но Эмпедокл, не раздумывая, отказался от столь заманчивой перспективы. И в то же время он вполне благосклонно относился к тому, чтобы его считали божеством.

Эмпедокл яростно обличал роскошь, но сам разгуливал в дорогих одеждах с золотой повязкой на голове.

А когда мудрецу наскучила жизнь, он рассчитался с ней весьма оригинальным способом — прыгнул в кратер вулкана Этна.

Судя по всему столь странный поступок Эмпедокла непосредственно вытекал из его философского учения, согласно которому ничто в мире не возникает из ничего и ничто не пропадает бесследно, а следовательно, мир бесконечен во времени.

Этот сицилийский мудрец писал:

Но и другое тебе я поведаю: в мире сем тленном

Нет никакого рожденья, как нет и губительной смерти.

Есть лишь смешенье одно с размешеньем того, что смешалось,

Что и зовут неразумно рождением темные люди.

Глупые! Как близорука их мысль, коль они полагают,

Будто действительно раньше не бывшее может возникнуть,

Иль умереть и разрушиться может совсем то, что было.

Ибо из вовсе не бывшего сущее стать не способно…

Но, пожалуй, самым большим оригиналом среди всех древнегреческих философов был Зенон Элейский (около 490 г. — 430 г. до н. э.), приемный сын и любимый ученик выдающегося мыслителя Парменида (конец VI века — V век до н. э.), человек, которому суждено было заложить подлинно научный фундамент исследования бесконечного.

Этому в немалой степени способствовало и доведенное у древних греков едва ли не до совершенства искусство спора. В публичных дискуссиях и состязаниях ораторов, где победа определялась прежде всего авторитетом логических доказательств и способностью убедить присутствующих, родилось и было отточено острое оружие: умение доказать свою правоту путем столкновения противоречивых доводов и посылок. Соперники изобретали впечатляющие аргументы, рассыпали перлы остроумия, старались подловить своего противника, заманить в ловушку, поставить его в безвыходное положение. Судьи тут же определяли победителя.

Да и сама греческая философия развивалась в условиях постоянных споров, острой полемики различных философских школ и направлений.

В отличие от Востока, где громадную, определяющую роль играла сила традиций и где мыслители и философы выступали в роли непогрешимых пророков, вещающих непререкаемые истины, греки выше всего ценили разум и были твердо убеждены в том, что все в мире может быть понято и исследовано с помощью чисто логических рассуждений и доказательств.

Благодаря этому греческие философы чувствовали себя во многом независимыми от предвзятых представлений об окружающем мире. Мысль их парила свободно и не страшилась даже таких утверждений, которые на первый взгляд могли показаться абсурдными.

Этот полет смелой мысли, а также приобретенная в бесчисленных спорах и диспутах привычка к парадоксальным рассуждениям и заключениям несомненно сыграли первостепенную роль в поразительных достижениях древнегреческой науки, в особенности математики, и, в частности, в изучении бесконечности.

За долгие годы занятий философией Зенон выработал в себе блестящую способность опровергать противника и посредством возражений ставить его в затруднительное положение, научился рассматривать один и тот же предмет с противоположных сторон.

— Без всестороннего и обстоятельного разыскания невозможно уразуметь истину, — говорил он.

Зенон обладал не только выдающимся умом, но и, пожалуй, лучше, чем кто бы то ни было, умел мыслить парадоксально — многие его рассуждения и заключения оказывались неожиданными даже для самых выдающихся мудрецов.

Эта удивительная способность к парадоксальным выводам и привела Зенона к его знаменитым апориям — одному из самых поразительных достижений человеческой мысли.

Во времена Зенона в древнегреческой математике и философии со всей остротой встал вопрос о свойствах пространства и времени, теснейшим образом связанный с представлениями о конечном и бесконечном. Вопрос ставился так: можно ли и до каких пор осуществлять процесс делимости тела, пространства и времени? Завершится ли когда-либо такой процесс или он будет продолжаться беспредельно?

Одна из первых концепций бесконечности была выдвинута выдающимся философом-материалистом Анаксагором (около 500 г. — 428 г. до н. э.), известным своей непримиримой борьбой с мистикой и религией.

Началом всего сущего Анаксагор считал «гомеомерии» — бесконечное число элементов материи. Их сочетания дают все многообразие вещей.

Процесс деления тела бесконечен, утверждал он, и потому нет смысла говорить о его конечном результате. Следовательно, не существует наименьших неделимых частиц. Число частиц, из которых состоит данная вещь, всегда можно увеличить.

«И в малом ведь нет наименьшего, по всегда есть меньшее. Ибо бытие не может разрешиться в небытие, но и в отношении к большому есть большее. И оно равно малому по количеству. Сама же по себе каждая вещь и велика и мала».