Рис. 9. Навскидку мы можем определить около трех предметов (рисунок слева); если мы видим большее количество предметов, то нам придется пересчитать их один за другим (рисунок справа). У опытных геймеров этот лимит доходит до пяти
Да, они быстрее переключают внимание с одного эпизода на другой. Постараюсь объяснить, что я имею в виду. Представьте, что я показываю вам на экране одновременно две буквы, например «С» и через долю секунды «V». При этом прошу вас сказать мне, что вы увидели. Если эксперимент проходит правильно, вы увидите «С», но не увидите «V», которая появилась практически одновременно, потому что ваше сознание все еще занято первой буквой в тот момент, когда появляется вторая. Что же касается адептов видеоигр, то они одновременно увидят обе буквы, так как их внимание не будет сконцентрировано на первой букве дольше необходимого минимума и сразу же переключится на восприятие второй буквы.
Таким образом улучшается распределение внимания игрока не только в пространстве, но и во времени. А что происходит с самыми элементарными функциями мозга в результате регулярных занятий видеоиграми, оказывают ли игры благотворное воздействие на эти функции? Что, например, случается с базовым визуальным восприятием, со способностью лучше видеть даже мельчайшие детали? Если свести все к шутке, то вопрос будет выглядеть следующим образом: «Можно ли сравнить занятия видеоиграми с ношением очков, улучшающих зрение?»
Можно, но только в какой-то степени. Те же исследователи показали, что качество зрительного восприятия, называемое по-научному контрастной чувствительностью зрительного анализатора, в значительной степени возрастает. В целом контрастная чувствительность означает способность различать детали и формы на картинках с низкой степенью контрастности.
Рис. 10. Обычно мы зрительно воспринимаем формы с большой степенью контрастности (внизу, под пунктирными линиями). У опытных геймеров этот лимит гораздо выше (над пунктирными линиями), что свидетельствует об усилении восприятия форм со слабым контрастом
На рисунке 10 можно видеть, что светлые и темные полосы легко различимы в нижней части рисунка, где контраст достаточно хорошо выражен. При подъеме кверху контрастность уменьшается, и полосы становятся практически неразличимыми. Таким образом, игры жанра «экшн» при условии регулярных тренировок перемещают границу невидимого кверху. И игроки обретают способность различить на рисунке полосы даже со слабым контрастом. Восприятие форм слабой контрастности имеет большое значение как в профессиональной деятельности, например среди врачей-радиологов или летчиков, так и в обычной жизни, когда приходится в вести машину в тумане, который подчас значительно уменьшает контрастность окружающего мира.
Зададимся вопросом: а какие видеоигры оказывают положительное воздействие на зрительное восприятие?
Разумеется, все вышесказанное относится к играм жанра «экшн», когда нужно срочно выявить неприятеля, не спутать его с хорошими людьми и выстрелить как можно быстрее, точно наводя цель. Чтобы добиться положительных результатов необходимы три условия. Во-первых, игра требует точности и собранности (чтобы выстрелить и убить врага), а зрение улучшается только при условии, что в этом имеется крайняя необходимость (в данном случае требуются навыки для мгновенной корректировки стрельбы). Во-вторых, в игре все события происходят с молниеносной скоростью, и они всегда непредсказуемы, поэтому невозможно заранее предъявлять к себе какие-то требования и подготовиться, чтобы как можно лучше выполнить определенные действия. И в-третьих, игра – это всегда мотивация, и вы всегда будете в выигрыше, что принесет вам удовлетворение, поскольку интеллект противников в видеоиграх адаптируется к вашему уровню. И будь вы «продвинутым» геймером или новичком, вы всегда будете вознаграждены и довольны собой, а значит, мотивированы на продолжение.
Возникает вопрос, а какое практическое применение в области медицины может иметь это благоприятное воздействие видеоигр на зрительное восприятие?
В экспериментах, о которых я только что говорил, принимали участие люди, обладающие хорошим здоровьем и нормальным зрением, что говорит о том, что даже нормальное зрительное восприятие можно улучшить. И это открытие имеет большой потенциал как в лечении детей, страдающих нарушениями развития зрительного восприятия, так и в смягчении симптомов естественного ухудшения зрения в пожилом возрасте. И все же стоит отметить, что создатели всех существующих игр при их разработке не ставили перед собой именно этой цели. Речь идет о побочном благотворном эффекте. Поэтому нам остается только надеяться, что скоро будут созданы игры, влияние которых на зрение будет оптимизировано.
7. Двенадцать конфет лучше четырех
Начнем с самого примитивного вопроса: что такое число?
Среди множества возможных ответов остановим наше внимание на одном. При этом заметим, что он скорее носит интуитивный характер, чем является математической аксиомой. Представьте, что у вас три яблока на столе, три банана в буфете, три птицы на ветке перед окном, вы слышите три ноты, недавно узнали о трех гениальных идеях и что у вас осталось три дня отпуска. Между всеми этими объектами нет ничего общего: одни из них можно услышать, другие летают, третьи предрасполагают к размышлению. Единственное, что их объединяет, это число три. Таким образом, число – это абстрактное свойство данных групп предметов, не зависящее от места их нахождения, цвета, формы, их зрительного или звукового восприятия.
Как же дети открывают для себя эту абстрактную идею числа, количества?
Знаменитый психолог Жан Пиаже, занимавшийся проблемами психического развития, полагал, что дети познают понятие абстрактного числа с большим трудом и довольно поздно.
В ходе типичного для Пиаже эксперимента ребенку показывали по четыре белых и черных камня (жетона), расположенных в два ряда напротив друг друга, и задавали ему вопрос: «Каких камней больше: белых или черных? Или их количество одинаково?» (рисунок 11). Ребенок отвечал, что белых камней столько же, сколько и черных. На следующем этапе эксперимента увеличивали как расстояние между черными камнями, так и количество белых камней в рядах. После чего ребенку задавали тот же вопрос, на который он отвечал, что черных камней больше. Иначе говоря, при ответе он основывался не на абстрактном понятии количества, а на величине ряда черных камней, который был длиннее белого ряда. И вывод, к которому пришел Пиаже в результате экспериментов этого типа, звучал так: «Дети в раннем возрасте не обладают абстрактным понятием числа, которое формируется у них приблизительно в семилетнем возрасте, когда они больше не допускают ошибок при прохождении вышеописанного теста».
Рис. 11. Вполне возможно запутать ребенка. И тогда он скажет, что в четвертом ряду больше жетонов, чем в третьем
Но родители могут мне возразить, сказав, что семь лет – это слишком поздно и что дети могут оценивать количество предметов гораздо раньше, задолго до семилетнего возраста.
Буду вынужден с ними согласиться. В 1967 году Джек Мехлер и Том Бевер опубликовали в журнале «Science» статью, в которой говорилось, что даже совсем маленькие дети, не достигшие возраста, предлагаемого Пиаже, обладают способностью к счету. Они повторили эксперимент Пиаже и попросили детей выбрать из двух рядов тот, где было больше предметов. Дети, подвергшиеся тестированию, были совсем маленькими, от двух до четырех с половиной лет, то есть находились именно в том возрасте, который Пиаже даже не рассматривал. Они взяли на себя смелость опровергнуть вывод Пиаже и заявили, что если дети у Пиаже совсем не разбирались в понятиях количества и числа, то только лишь потому, что эксперимент был проведен некорректно.
Что же нового Мехлер и Бевер привнести в эксперимент?
Все оказалось настолько просто, насколько и изящно (рисунок 12). Они провели вышеуказанный эксперимент в двух версиях. Одна была полным аналогом предыдущего теста: «Дорогой, скажи, в каком ряду больше камней?» А в другой версии они прибегли к небольшой хитрости, заменив камни конфетами и сказав детям, что они могут съесть конфеты из того ряда, который им больше придется по нраву.
Вдумчивый читатель скажет, что его не удивило бы, если бы дети выбрали тот ряд, в котором было больше конфет…
Именно это и произошло. В версии с камнями дети отвечали по-разному, в зависимости от возраста: иногда правильно, иногда путались, иногда случайно угадывали верный ответ. Нужно отдавать себе отчет в том, что, когда детей просят указать, «в каком ряду больше», на их ответ может повлиять уровень владения языком, непонимание разницы между «больше» и «длиннее», желание понравиться взрослому, который проводит эксперимент. Короче говоря, на результат может повлиять множество вещей, которые не имеют ничего общего с понятием числа как таковым. Зато в том, что касается конфет, уже начиная с двух лет малыши безошибочно угадывают верный ответ и всегда выбирают тот ряд, где конфет больше, что свидетельствует о том, что дети на самом деле знают гораздо больше того, чем могут выразить словами.
А что же можно сказать о детях более раннего возраста, которым нет еще и двух лет?
В прошлом году появилась очень интересная статья, в которой рассказывается об исследовании понятия числа у грудничков, которым от роду всего лишь два дня.
Хотя в этом возрасте им еще рано питаться конфетами…
Но если говорить серьезно, то можно предположить, что каждый возраст требует своих методик исследования.
Рис. 12….зато дети никогда не ошибаются, если речь идет о рядах с конфетами!
Ученые представили младенцам на слух серию звуков, число которых равнялось четырем (например, «та-та-та-та», «фи-фи-фи-фи», «гу-гу-гу-гу»). И звучало все это в течение двух минут, чтобы младенцы освоили число четыре, (рисунок 13). Затем ученые один за другим показали детям несколько рисунков, на которых были изображено некоторое количество геометрических форм. На отдельных рисунках количество форм соответствовало количеству звуков (в данном случае – четырем), на других рисунках количество форм было больше или меньше четырех (например, двенадцать).