Почему мы существуем? Величайшая из когда-либо рассказанных историй — страница 18 из 60

К счастью для Дирака, менее чем через год после его вынужденной капитуляции Карл Андерсон обнаружил в космических лучах частицы, идентичные электронам, но с противоположным зарядом. Так появился на свет позитрон, и люди слышали, как Дирак сказал в ответ на замечание по поводу его нежелания сделать выводы, прямо следующие из его же собственных математических выкладок: «Мое уравнение оказалось умнее меня!» Много позже он, говорят, дал другое объяснение тому, что не признал в свое время возможность существования новой частицы: «Чистая трусость».

«Предсказание» Дирака, хоть и сделанное практически против его воли, стало замечательной вехой. Впервые на базе чисто теоретических представлений и математических выкладок была предсказана новая частица. Подумайте об этом.

Максвелл в свое время в результате проведенного им объединения электричества и магнетизма «предсказал» задним числом существование света. Леверье предсказал существование Нептуна на базе наблюдений за аномалиями орбиты Урана. Но теперь перед нами было предсказание нового фундаментального свойства Вселенной на базе чисто теоретических рассуждений об устройстве природы на ее фундаментальнейших масштабах, без всякой предварительной прямой экспериментальной мотивации. В принципе могло показаться, что это достижение – вопрос веры, но на самом деле ни о какой вере здесь речи не шло – в конце концов, сам предсказатель в это не поверил, – и хотя, подобно вере, оно предсказывало некую ненаблюдаемую реальность, в отличие от веры, эту предсказанную реальность можно было экспериментально проверить; по идее, предсказание легко могло оказаться ошибочным.

Открытие Эйнштейном теории относительности совершило настоящую революцию в наших представлениях о пространстве и времени, а открытия Шрёдингера и Гейзенберга, связанные с законами квантовой механики, революционно изменили наши представления об атоме. Дирак первым сумел совместить то и другое и получил новое окно в скрытую природу вещества на куда меньших масштабах. Его успех ознаменовал собой начало современной эпохи в физике элементарных частиц и задал тренд, продолжавшийся почти столетие.

Во-первых, если уравнение Дирака считать применимым в более общем случае и к другим частицам, – а оснований считать, что это не так, не было никаких, – то «античастицы» (как их позже стали называть) должны иметься не только у электронов, но и у всех остальных известных в природе частиц.

Антивещество стало популярной темой научной фантастики. Звездные корабли, такие как «Энтерпрайз» в «Звездном пути», неизменно использовали антивещество в качестве топлива, а возможность создания бомб из антивещества стала самой глупой составляющей сюжета мистического триллера «Ангелы и демоны». Но само по себе антивещество реально. В космических лучах были обнаружены не только позитроны, но позже и антипротоны, и антинейтроны.

На фундаментальном уровне антивещество не представляет собой ничего особенно странного. В конце концов, позитроны точно такие же, как электроны, только заряд имеют противоположный. Они не «падают вверх» в гравитационном поле, как многие думают. Вещество и антивещество действительно могут взаимодействовать и полностью аннигилировать в чистое излучение, что выглядит как-то зловеще. Но аннигиляция по схеме частица-античастица всего лишь один из множества новых возможных видов взаимодействия элементарных частиц, которые могут иметь место, если уж мы проникаем в субатомное царство. Более того, потребовалось бы немало антивещества, чтобы энергия, полученная при его аннигиляции с веществом, хотя бы зажгла лампочку.

Однако именно в этой обычности как раз и кроется реальная странность антивещества. Его можно уверенно назвать странным, потому что Вселенная, в которой мы живем, наполнена веществом, но не антивеществом. Вселенная из антивещества выглядела бы точно так же, как наша. А вселенная, состоящая из вещества и антивещества в равных долях, что на первый взгляд, конечно, представляется самым разумным ее устройством, довольно скоро (если в промежутке не произошло бы ничего необычного) стала бы весьма скучным местом, поскольку вещество и антивещество быстро аннигилировали бы друг с другом и в такой вселенной не осталось бы ничего, кроме излучения.

Вопрос о том, почему в нашем мире много вещества, но мало антивещества, остается одним из интереснейших в современной физике. Но признание странности антивещества на том основании, что мы нигде его не встречаем, когда-то побудило меня предложить следующую аналогию. Антивещество можно назвать странным в том же смысле, в каком странными можно назвать… ну, скажем, бельгийцев. По своей природе они, конечно, не странные но если в большой лекционной аудитории попросить бельгийцев поднять руки, как однажды сделал я, то окажется, что их там почти нет.

Правда, когда я недавно читал лекцию в Бельгии, мою аналогию, судя по всему, не оценили.

Глава 8Излом времени

Ибо что такое жизнь ваша? Пар, являющийся на малое время, а потом исчезающий.

Иаков 4:14

Каждая скрытая природная связь, которую удавалось раскрыть науке со времен Галилея, вела физику в новом и неожиданном направлении. Объединение электричества и магнетизма прояснило нам скрытую природу света. Объединение света с Галилеевыми законами движения прояснило скрытые связи между пространством и временем, заключенные в принципе относительности. Объединение света и вещества открыло нам странную квантовую вселенную. А объединение квантовой механики с принципом относительности указало на существование античастиц.

Открытие античастиц Дираком стало результатом того, что он «догадался», каким должно быть правильное уравнение, описывающее релятивистское квантовое взаимодействие электронов с электромагнитными полями. Он мало чем мог подтвердить свою находку, и это одна из причин, почему и сам Дирак, и другие поначалу так скептически отнеслись к этому результату. Почему физика не может обойтись без антивещества, прояснилось благодаря работе Ричарда Фейнмана, одного из крупнейших физиков второй половины XX века.

Фейнман был полной противоположностью Дираку. Если Дирак слыл до крайности немногословным, то Фейнман – компанейским человеком и отличным рассказчиком. Если Дирак почти (а может, и вообще) никогда намеренно не шутил, то Фейнман был любителем розыгрышей и откровенно наслаждался жизнью во всех ее проявлениях. Если Дирак был слишком застенчив, чтобы встречаться с женщинами, то Фейнман после смерти первой жены сменил немало подружек. Но физика создает странные союзы, так что Фейнман с Дираком навсегда останутся интеллектуально связанными, и вновь благодаря свету. Вместе они помогли завершить построение долгожданной квантовой теории излучения.

Фейнман, принадлежавший к следующему поколению, преклонялся перед Дираком и называл его в числе своих главных кумиров в физике. Поэтому не удивительно, что короткая статья Дирака 1939 г., где он предложил новый подход к квантовой механике, подтолкнула Фейнмана к работе, которая в итоге принесла ему Нобелевскую премию.

Гейзенберг и Шрёдингер объяснили квантово-механическое поведение систем: как, начав с некоторого исходного состояния системы, рассчитать ее эволюцию во времени. Однако свет снова дал ключ к другому способу понимания квантовых систем.

Мы привыкли думать, что свет всегда распространяется по прямой. Однако это не так. Это можно заметить, наблюдая за миражом над длинным прямым участком шоссе в жаркий день. Дорога впереди кажется мокрой, потому что свет неба преломляется и изгибается, проходя последовательно через множество слоев теплого воздуха вблизи поверхности дороги, пока, повернув слегка вверх, не попадает в ваш глаз.



Французский математик Пьер де Ферма предложил в 1650 г. другой способ осмысления этого явления. Свет движется быстрее в теплом, менее плотном воздухе, нежели в холодном. Поскольку теплее всего воздух у поверхности, свету требуется меньше времени, чтобы попасть в ваш глаз по траектории, проходящей вдоль поверхности, чем напрямую. Ферма сформулировал принцип, получивший название принципа наименьшего времени, который гласит: чтобы определить итоговую траекторию любого светового луча, нужно просто проверить все возможные пути из точки A в точку B и найти тот из них, что требует наименьшего времени.

Формулировка звучит так, будто свет обладает собственной волей. Я с трудом удержался и не сказал, что свет рассматривает все возможные пути и выбирает тот из них, который требует наименьшего времени, поскольку уверен, что Дипак Чопра тут же процитировал бы меня и заявил, что я наделяю свет сознанием. Свет не имеет сознания, но математический результат выглядит так, будто свет выбирает самый быстрый путь.

А теперь вспомните, что в квантовой механике световые лучи и электроны движутся вовсе не по единственной траектории от точки к точке, а по всем возможным траекториям одновременно. Каждая траектория имеет определенную вероятность быть измеренной, но классическая, занимающая минимум времени траектория имеет самую большую вероятность из всех.

В 1939 г. Дирак предложил способ расчета всех таких вероятностей и их суммирования для определения квантово-механических шансов на то, что частица, вылетающая из точки A, в конечном итоге окажется в точке B. Ричард Фейнман, в то время студент-старшекурсник, услышав о статье Дирака на пивной вечеринке, математически вывел конкретный пример, на котором продемонстрировал, что эта идея работает. Взяв посыл Дирака в качестве стартового момента, Фейнман получил результаты, идентичные тому, что можно было получить с использованием подходов Шрёдингера и Гейзенберга, по крайней мере в простых случаях. Что еще важнее, Фейнман теперь мог использовать новую формулу «суммирования по траекториям» в применении к тем квантовым системам, которые невозможно легко описать или проанализировать другими методами.

В итоге Фейнман доработал свой математический метод, чтобы развить релятивистское уравнение Дирака для квантового поведения электронов до полностью непротиворечивой квантово-механической теории взаимодействия между электронами и светом. За эту работу, положившую начало теории квантовой электродинамики (КЭД), в 1965 г. он был удостоен Нобелевской премии, которую разделил с Джулианом Швингером и Синъитиро Томонагой.