Почему мы существуем? Величайшая из когда-либо рассказанных историй — страница 19 из 60

Однако еще до завершения этой работы Фейнман описал интуитивную физическую причину, по которой теория относительности в сочетании с квантовой механикой непременно требует существования античастиц.

Рассмотрим электрон, движущийся вдоль некоторой возможной «квантовой» траектории. Что это означает? До тех пор пока я не пытаюсь измерить положение или скорость электрона в процессе его движения, он движется одновременно по всем возможным траекториям между двумя точками. Среди этих траекторий есть и неразрешенные в классической физике, поскольку при движении по ним нарушались бы такие принципы, как, например, запрет превышения скорости света, вытекающий из теории относительности. С другой стороны, принцип неопределенности Гейзенберга гласит, что, даже если я попытаюсь измерить характеристики электрона во время его движения на каком-то небольшом промежутке времени, его скорости все же останется присуща некоторая неопределенность, избавиться от которой невозможно. Так что даже если я буду измерять траекторию электрона в различных точках, я не смогу исключить возможность его странного неклассического поведения в промежутках. Представьте, к примеру, следующую траекторию.



В течение короткого времени в середине изображенного периода электрон движется быстрее света.

Но Эйнштейн говорит нам, что время относительно, и разные наблюдатели измерят разные промежутки времени между событиями. А если какая-то частица движется быстрее света в одной системе отсчета, то в другой системе отсчета наблюдателю покажется, что она движется назад во времени, как изображено на следующем рисунке (это одна из причин, почему теория относительности ограничивает скоростью света движение всех наблюдаемых частиц).



Фейнман понял, что во второй системе отсчета это выглядело бы как электрон, который некоторое небольшое время движется вперед во времени, затем движется назад во времени, затем снова движется вперед. Но как выглядит электрон, который движется назад во времени? Поскольку электрон – отрицательно заряженная частица, отрицательный заряд, движущийся назад во времени слева направо, эквивалентен положительному заряду, движущемуся вперед во времени справа налево. Таким образом, наша схема эквивалентна следующей картине.



На этом рисунке все начинается с электрона, движущегося вперед во времени, но затем в какой-то момент из пустого пространства внезапно появляются электрон и еще одна частица, которая очень похожа на электрон, но обладает противоположным зарядом; после этого положительно заряженная частица движется влево, опять же вперед во времени, пока не встречается с первоначальным электроном и не аннигилирует с ним; в результате остается один электрон, который продолжает движение.

Все это происходит на таком масштабе времени, который невозможно наблюдать непосредственно, – ведь если бы все это можно было наблюдать, то такое странное поведение, нарушающее фундаментальные положения теории относительности, было бы невозможно. Однако можете быть уверены, что внутри бумаги в книге, которую вы сейчас читаете, или за экраном вашей электронной книги такого рода процессы происходят постоянно.

Но если такая траектория возможна в невидимом квантовом мире, то античастицы – частицы, идентичные известным частицам, но обладающие противоположным по знаку электрическим зарядом (в уравнениях этой теории они выглядят как частицы, движущиеся назад во времени), – должны существовать и в видимом мире. Это также делает возможным спонтанное возникновение в пустом пространстве пар частица-античастица, при условии что они аннигилируют за такое короткое время, чтобы их недолгое существование нельзя было измерить.

Рассуждая подобным образом, Фейнман не только привел физический аргумент в пользу существования античастиц, требуемых для объединения теории относительности и квантовой механики, но и наглядно продемонстрировал, что ни в какой конкретный момент нельзя сказать наверняка, что в некоторой области пространства находится только одна или две частицы. Потенциально бесконечное количество «виртуальных» пар частица-античастица, существование которых настолько мимолетно, что их нельзя наблюдать непосредственно, может спонтанно появляться и исчезать на столь коротких масштабах времени, что измерить их мы не в состоянии.

Это описание звучит настолько дико, что неминуемо должно вызывать недоверие с вашей стороны. В конце концов, если мы не можем непосредственно измерить эти виртуальные частицы, то как мы можем утверждать, что они существуют?

Ответ на этот вопрос заключается в том, что, хотя мы не в состоянии регистрировать воздействие виртуальных пар частица-античастица непосредственно, мы можем опосредованно сделать вывод об их присутствии, поскольку они косвенно изменяют свойства систем, которые мы можем наблюдать.

Теория, в которой такие виртуальные частицы присутствуют наряду с электромагнитными взаимодействиями электронов и позитронов, называется квантовой электродинамикой и представляет собой самую лучшую из всех научных теорий, имеющихся в нашем распоряжении. Предсказания, основанные на этой теории, сравниваются с данными наблюдений и совпадают с ними с точностью до десяти и более значащих цифр. Ни в какой другой области физической науки не достигается такого уровня точности соответствия наблюдаемых данных и предсказаний, основанных на непосредственном применении первичных принципов на самых фундаментальных масштабах, которые мы в состоянии описать.

Но такая согласованность между теорией и наблюдениями возможна лишь в том случае, если при расчетах учитываются эффекты, связанные с виртуальными частицами. В действительности сам феномен существования виртуальных частиц подразумевает, что в квантовой теории взаимодействие между частицами всегда передается путем обмена виртуальными частицами, тем способом, о котором я сейчас расскажу.

В квантовой электродинамике электромагнитные взаимодействия осуществляются путем поглощения или испускания квантов электромагнитной энергии, то есть фотонов. Следуя Фейнману, мы схематически изобразим такое взаимодействие в виде электрона, который испускает волнистый «виртуальный» фотон (g) и изменяет направление своего движения.



Тогда электрическое взаимодействие между двумя электронами можно изобразить следующим образом.



В данном случае электроны взаимодействуют друг с другом, обмениваясь виртуальным фотоном, который спонтанно испускается электроном слева и поглощается другим электроном через такое короткое время, что наблюдать этот фотон невозможно. После такого взаимодействия эти два электрона отталкиваются друг от друга и разлетаются.

Это объясняет также, почему электромагнетизм является дальнодействующей силой. Согласно принципу неопределенности Гейзенберга, если мы измеряем состояние системы на протяжении некоторого отрезка времени, то в измеренной энергии этой системы присутствует соответствующая неопределенность. Причем чем больше этот отрезок времени, тем меньше связанная с ним неопределенность энергии. У фотона нет массы, и поэтому, в соответствии с эйнштейновским соотношением для массы и энергии, виртуальный безмассовый фотон при рождении может нести сколь угодно малое количество энергии. Это означает, что он может существовать и двигаться сколь угодно долгое время – и, соответственно, преодолеть сколь угодно большое расстояние – до своего поглощения; при этом он по-прежнему будет находиться под защитой принципа неопределенности, поскольку переносимая им энергия так мала, что никакого видимого нарушения закона сохранения энергии не происходит. Таким образом, электрон на Земле способен испустить виртуальный фотон, который долетит до альфы Центавра на расстоянии четырех световых лет и там окажет воздействие на электрон, который его поглотит. Однако если бы фотон был не безмассовым, а обладал массой покоя m, то минимальная переносимая им энергия определялась бы формулой E = mc2 и без видимого нарушения закона сохранения энергии он мог бы пройти до момента своего поглощения лишь конечное расстояние (поскольку у него на это есть лишь конечное время).

Но с виртуальными частицами связана серьезная потенциальная проблема. Если частицы могут обменяться одной виртуальной частицей или одна виртуальная пара частица-античастица может спонтанно возникнуть из вакуума, то почему то же самое не может произойти с двумя частицами или парами, а то и с бесконечным их числом? Более того, если виртуальные частицы должны исчезать за время, обратно пропорциональное переносимой ими энергии, то что мешает частицам выскакивать из пустого пространства, неся сколь угодно большую энергию, но существовать при этом сколь угодно малое время?

Попытавшись учесть эти эффекты, физики пришли в своих расчетах к бесконечным результатам.

Что с ними делать? Игнорировать.

На самом деле не совсем игнорировать, но систематически заметать под ковер бесконечные составляющие в вычислениях, оставляя только конечные. При этом, разумеется, встают вопросы о том, как узнать те конечные части, которые надо сохранить, и почему вся эта процедура оправданна.

Понадобилось несколько лет, чтобы ответить на эти вопросы, и Фейнман был в составе научной группы, которой удалось это сделать. Но и после этого на протяжении многих лет, вплоть до получения в 1965 г. Нобелевской премии, он считал весь этот проект своего рода фокусом и надеялся, что в какой-то момент появится более фундаментальное решение проблемы.

И все же есть веская причина игнорировать бесконечности, вносимые виртуальными частицами с произвольно высокими энергиями. В силу принципа неопределенности Гейзенберга эти энергичные частицы могут до своего исчезновения преодолевать лишь очень короткие расстояния. Как же убедиться, что наши физические теории, разработанные для объяснения явлений в масштабах, доступных сегодня нашим измерениям, работают точно так же и в очень малых масштабах? Может быть, в таких масштабах проявляется некая новая физика с новыми силами и новыми элементарными частицами?