Если бы нам требовалось знать все законы физики вплоть до бесконечно малых масштабов, чтобы объяснить явления в гораздо более крупных масштабах, доступных нашему восприятию, физика стала бы безнадежным делом. Нам потребовалась бы теория всего, прежде чем мы смогли бы разработать теорию хотя бы чего-нибудь.
На самом же деле разумными физическими теориями следует считать те, которые нечувствительны к любой возможной новой физике, проявляющейся на гораздо меньших масштабах, чем те, для описания которых наши теории были разработаны. Мы называем такие теории перенормируемыми, поскольку производим «перенормировку» бесконечных без этой процедуры предсказаний, избавляясь от расходимостей и оставляя лишь конечные, разумные результаты.
Но одно дело – сказать, что так следует делать, и совсем другое – доказать, что это можно сделать. Потребовалось немало времени, чтобы разобраться в этой процедуре. В первом конкретном примере, призванном продемонстрировать, что такая процедура имеет смысл, были точно рассчитаны энергетические уровни атомов водорода, что позволило корректно рассчитать измеримый в лаборатории спектр света, испускаемого и поглощаемого этими атомами.
Хотя Фейнман и его коллеги-нобелиаты прояснили механизм математической реализации методики перенормировки, доказательство того, что квантовая электродинамика (КЭД) является «перенормируемой» теорией и позволяет точно предсказывать все физические величины, которые в принципе в ней измеримы, было завершено Фрименом Дайсоном. Его доказательство придало квантовой электродинамике беспрецедентный в физике статус. Квантовая электродинамика представляет собой полную теорию квантовых взаимодействий между электронами и светом и дает сопоставимые с наблюдениями предсказания со сколь угодно высокой точностью, которая ограничена лишь энергией и целеустремленностью теоретиков, проводящих расчеты. В результате мы можем с высочайшей точностью предсказывать спектры испускаемого атомами излучения и создавать лазерные системы и атомные часы, задающие новые стандарты точности измерения расстояния и времени. Предсказания квантовой электродинамики настолько точны, что мы можем проверять в экспериментах самые ничтожные отклонения от них в поисках возможных новых физических законов, которые могут обнаружиться при исследовании все меньших и меньших масштабов пространства и времени.
Теперь, пятьдесят лет спустя, мы понимаем также, что квантовая электродинамика оказалась такой замечательной физической теорией отчасти благодаря связанной с ней симметрии. Симметрии в физике позволяют выявлять самые глубокие свойства физической реальности. Начиная с этого момента и далее в обозримом будущем именно поиск новых симметрий определяет прогресс в области физики.
Симметрии состоят в том, что некоторые изменения в первичных математических величинах, описывающих физический мир, не влекут за собой изменений в том, как мир функционирует или выглядит. К примеру, сферу можно повернуть в любом направлении на любой угол, и она при этом останется в точности такой же, какой была. Ничто в физике сферы не зависит от ее ориентации. То, что законы физики не меняются от места к месту, от момента к моменту, имеет глубокое значение. Симметрия физических законов относительно времени – то, что в них, судя по всему, ничего не меняется с течением времени, – влечет за собой закон сохранения энергии в физической вселенной.
В квантовой электродинамике одна из фундаментальных симметрий лежит в основе природы электрических зарядов. Мы совершенно произвольно называем их «положительными» и «отрицательными». Мы могли бы заменить каждый положительный заряд во Вселенной на отрицательный и наоборот, и Вселенная при этом выглядела бы и вела себя в точности так же, как сейчас.
Вообразите, к примеру, что мир – это одна гигантская шахматная доска с черными и белыми полями. Ничто в шахматах не изменилось бы, замени я черный цвет на этой доске белым, а белый – черным. Белые фигуры стали бы черными и наоборот, но в остальном доска выглядела бы точно так же.
Заметим, что именно благодаря этой симметрии природы электрический заряд сохраняется: никакой положительный или отрицательный заряд не может спонтанно появиться в ходе какого бы то ни было процесса, даже квантово-механического, без одновременного появления равного по величине и противоположного по знаку заряда. Поэтому виртуальные частицы спонтанно возникают в пустом пространстве только парами, в сочетании с античастицами. Поэтому же на Земле случаются грозы с молниями. Электрические заряды скапливаются на поверхности Земли, потому что грозовые облака накапливают в своем основании большие отрицательные заряды. Единственный способ избавления от этих зарядов – сильный ток с поверхности земли вверх, к небу.
Закон сохранения заряда, вытекающий из этой симметрии, также можно понять с использованием моей шахматной аналогии. То, что белый квадрат должен непременно соседствовать с черным, означает, что при встречной замене черного и белого вид доски не меняется. Если бы нашлось два черных квадрата, стоящих рядом, это означало бы, что доска обладает некоторой суммарной «чернотой», и тогда «черное» и «белое» перестали бы быть произвольными эквивалентными ярлыками. Черное в этом случае физически отличалось бы от белого. Короче говоря, симметрия между черным и белым на доске оказалась бы нарушена.
А теперь будьте внимательны, поскольку сейчас речь пойдет об идее куда более тонкой, но намного более важной. Она настолько важна, что, по существу, на ней основана вся современная теоретическая физика. При этом она настолько тонка, что ее трудно изложить без привлечения математики. Ее следствия продолжают выявлять до сих пор, хотя прошло уже больше ста лет с момента, когда она была впервые предложена. Так что не удивляйтесь, если для полного осмысления этой идеи вам потребуется пару раз перечитать ее описание. У физиков процесс ее осмысления занял значительную часть прошлого столетия.
Эта симметрия называется калибровочной по одной туманной исторической причине, о которой я расскажу чуть позже. Но странное название в данном случае несущественно. Важно, что подразумевает эта симметрия.
Калибровочная симметрия в электромагнетизме – это утверждение, что можно локально, в каждой точке пространства, изменить определение того, что есть положительный заряд, без изменения фундаментальных законов, связанных с электрическим зарядом, при условии, что будет также введена некоторая величина, которая помогает отследить это изменение определения от точки к точке. И этой величиной оказывается электромагнитное поле.
Попробуем разобрать это утверждение при помощи моей шахматной аналогии. Глобальная симметрия, описанная мною ранее, меняет черное на белое повсюду, так что при повороте шахматной доски на 180 градусов она нисколько не меняется и выглядит точно так же, как прежде, и ясно, что на шахматной игре эта операция никак не скажется.
А теперь представьте, что вместо этого я заменю черное на белое в одном квадрате, но не стану заменять белое на черное в соседнем с ним квадрате. Тогда на доске появятся два смежных белых квадрата. Ясно, что такая доска с двумя соседствующими белыми квадратами не похожа на ту, что была у нас раньше. Играть на ней, как прежде, будет нельзя.
Но погодите минутку. Что, если в специальной инструкции будет написано, как должны вести себя шахматные фигуры, встретив два смежных поля одинакового цвета, где цвет одного квадрата был изменен, а другого – нет? Тогда правила игры можно оставить прежними, при условии что при каждом ходе я буду заглядывать в эту инструкцию. Получается, что эта инструкция позволяет продолжать игру, как будто ничего не изменилось.
В математике величина, которая устанавливает некоторое правило, связанное с каждой точкой на поверхности, такой, к примеру, как шахматная доска, называется функцией. В физике функция, определенная в каждой точке нашего физического пространства, называется полем; примером может служить электромагнитное поле, описывающее, насколько велики электрические и магнитные силы в каждой точке пространства.
А теперь самое главное. Свойства, которые должны характеризовать форму необходимой функции (позволяющей нам изменять наше определение электрического заряда от точки к точке, не меняя лежащей в основе физики, управляющей взаимодействием электрических зарядов), в точности соответствуют тем свойствам, что характеризуют вид правил, управляющих электромагнитными полями.
Иначе говоря, требование о том, чтобы законы природы оставались инвариантными при калибровочном преобразовании – а именно при таком преобразовании, которое локально меняет то, что я называю положительным или отрицательным зарядом, точно так же требует и существования электромагнитного поля, управляемого в точности уравнениями Максвелла. Калибровочная инвариантность, как это называется, полностью определяет природу электромагнетизма.
Это ставит перед нами интересный философский вопрос. Что более фундаментально – симметрия или физические уравнения, выражающие эту симметрию? В первом случае, когда калибровочная симметрия природы требует существования фотонов, света и всех уравнений и явлений, открытых Максвеллом и Фарадеем, получается, что божественное повеление «Да будет свет!» становится идентичным требованию «Да будет электромагнетизм калибровочно инвариантным!». Может быть, этот вариант не столь красив и лаконичен, но менее верным он от этого не становится.
Вместо этого можно было бы сказать, что теория такова, какова она есть, а открытие математической симметрии в ее базовых уравнениях всего лишь счастливая случайность.
Разница между двумя этими точками зрения представляется в первую очередь семантической и именно поэтому может заинтересовать философов. Но природа все же снабжает нас некоторыми указаниями. Если бы квантовая электродинамика была единственной теорией, уважающей такую симметрию, то последняя точка зрения могла бы казаться более разумной.