Почему мы существуем? Величайшая из когда-либо рассказанных историй — страница 23 из 60

При бета-распаде нейтрон расщепляется на протон и электрон, а это, как я объясню чуть позже, было бы невозможно, если бы нейтрон не был чуть тяжелее протона. В нейтронном распаде удивительно не то, что он имеет место, но то, что происходит он так медленно. Обычно распад нестабильных элементарных частиц занимает миллионные или миллиардные доли секунды. Изолированные нейтроны живут в среднем более десяти минут.

Одной из основных причин того, что нейтроны живут так долго, является то, что масса нейтрона лишь слегка превышает сумму масс протона и электрона. Остающейся энергии, соответствующей массе покоя, едва хватает на то, чтобы позволить нейтрону распасться на эти частицы без нарушения закона сохранения энергии. (Еще одна причина состоит в том, что нейтрон распадается не просто на протон и электрон. Он распадается на три частицы… оставайтесь с нами!)

Хотя десять минут в атомных масштабах могут показаться вечностью, это все же довольно короткий промежуток времени по сравнению с продолжительностью жизни человека и атомов на Земле. Возвращаясь к загадке, которую я упоминал в начале этой главы, задам вопрос. Как можем мы состоять в основном из нейтронов, если они распадаются еще до первой рекламной паузы в тридцатиминутном телешоу?

Ответ опять же заключается в необычайной близости масс нейтрона и протона. Свободный нейтрон действительно распадается за десять минут или около того. Но рассмотрим нейтрон, связанный внутри атомного ядра. Связанность его означает, что для выбивания нейтрона из ядра необходимо затратить некоторое количество энергии. Но это означает также, что первоначально этот нейтрон, попадая в ядро, теряет энергию. Однако Эйнштейн учит нас, что полная энергия массивной частицы пропорциональна ее массе и определяется уравнением E = mc2. Это означает, что если нейтрон при связывании в ядре теряет энергию, то его масса уменьшается. Но поскольку его масса в изолированном состоянии лишь чуть-чуть превышает суммарную массу протона и электрона, то после потери части массы он уже не обладает достаточной энергией для распада на протон и электрон. Чтобы превратиться в протон, ему пришлось бы либо высвободить достаточно энергии, чтобы, помимо всего прочего, выбросить этот протон из ядра (на это его, учитывая стандартные энергии ядерных связей, не хватило бы), либо высвободить достаточно энергии, чтобы дать новому протону возможность остаться в новом стабильном ядре. Это ядро стало бы относиться к другому элементу, в ядре которого положительных зарядов на один больше, а увеличение положительного заряда ядра, как правило, тоже требует больше энергии, чем то небольшое количество, которое высвобождается при распаде нейтрона. В результате нейтроны в большинстве атомных ядер, содержащих нейтроны, остаются стабильными.

В общем, стабильность ядер, из которых состоит все, что мы видим вокруг, включая и бо́льшую часть атомов нашего тела, является случайным следствием того факта, что нейтрон и протон различаются по массе всего лишь на 0,1 %, так что из-за небольшого изменения массы первой из этих частиц при встраивании в ядро она теряет возможность распадаться с образованием второй частицы. Об этом я узнал от Томми Голда.

Когда я задумываюсь об этом, то не устаю поражаться. Существование сложного вещества, периодическая таблица элементов, всё вокруг – от далеких звезд до клавиатуры, на которой я это печатаю, – напрямую зависит от этого замечательного совпадения. Почему? Случайность это или законы физики требуют такого по каким-то неведомым нам пока причинам? Подобные вопросы заставляют нас, физиков, копать глубже в поисках возможных ответов.

Открытие нейтрона и последующее наблюдение его распада добавили к нашему субатомному зоопарку не одну новую частицу. Эти события заставили предположить, что самые, возможно, фундаментальные свойства природы – законы сохранения энергии и импульса – могут нарушаться на микроскопических масштабах атомных ядер.

Почти за двадцать лет до открытия нейтрона Джеймс Чедвик наблюдал некоторые странности в поведении бета-лучей; естественно, тогда ни он, ни кто-либо другой не могли знать, что лучи эти испускаются при распаде нейтронов. Спектр энергии, уносимой электронами, возникающими при нейтронном распаде, непрерывен и простирается практически от нулевой энергии до максимальной, а она зависит от того, сколько энергии остается после распада нейтрона; для свободного нейтрона эта максимальная энергия равна энергетической разнице между массой нейтрона и суммой масс протона и электрона.

Но здесь тоже имеется проблема. Проще всего увидеть эту проблему, если представить на мгновение, что протон и электрон обладают равными массами. Тогда если протон уносит больше энергии после распада нейтрона, чем электрон, то и двигаться он должен быстрее, чем электрон. Однако если при этом они обладают равными массами, импульс протона также будет превышать по величине импульс электрона. Но если нейтрон в момент распада находится в покое, то его импульс до распада равен нулю и тогда импульс улетающего протона должен в точности компенсировать импульс улетающего электрона. Но это невозможно, если только они не имеют равных по величине импульсов и не разлетаются в строго противоположных направлениях. Так что импульс протона ни в коем случае не может превышать по величине импульс электрона. Короче говоря, есть лишь одно значение для энергии и импульса двух частиц после распада, если эти две частицы обладают равными массами.

Те же рассуждения, хотя и чуть более сложные математически, применимы и в том случае, если протон и электрон различаются по массе. Если при распаде нейтрона образуются только две эти частицы, то их скорости – а значит, величины их энергий и импульсов – связаны между собой и имеют единственные, жестко заданные значения, определяемые отношением их масс.

Что из этого следует? Если электроны, возникающие в результате бета-распада нейтронов, на самом деле вылетают с разными (причем в широком диапазоне) значениями энергии, то, на первый взгляд, это нарушает законы сохранения энергии и импульса. Но, как я уже тонко намекал ранее, это верно лишь в том случае, если электрон и протон – единственные частицы, являющиеся продуктами нейтронного распада.

Опять же в 1930 г., всего за несколько лет до открытия нейтрона, замечательный австрийский физик-теоретик Вольфганг Паули написал письмо коллегам из Швейцарского федерального технологического института, и начиналось это письмо бессмертным обращением: «Дорогие радиоактивные леди и джентльмены». В письме Паули кратко изложил свое предложение по разрешению этой проблемы, относительного которого, по его собственным словам, «он не чувствовал себя в достаточной безопасности, чтобы опубликовать». Он предположил существование еще одной неизвестной электрически нейтральной элементарной частицы, которую он назвал нейтроном и которая, по его предположению, должна была наряду с электроном и протоном образовываться в результате бета-распада; тогда энергия, высвобождаемая при распаде, могла бы распределяться между электроном, протоном и этой частицей, что объясняло бы непрерывный спектр.

Паули, удостоенный позже Нобелевской премии за свой «принцип запрета» в квантовой механике, не был глупцом. Более того, он терпеть не мог глупцов. Он был знаменит тем, что бросался к доске во время лекций и вырывал мел из руки лектора, если считал, что тот говорит чепуху. Он умел весьма язвительно критиковать теории, которые ему не нравились, а самую едкую критику приберегал для идей настолько неопределенных, что они, как он говорил, «даже не ошибочны». (Один из моих уважаемых коллег в те времена, когда я преподавал в Йельском университете, известный математический физик Феза Гюрсей, однажды сказал репортеру в ответ на вопрос о том, в чем заключается смысл некоей идеи, которую с явно излишней помпой не так давно объявили ученые, занятые в первую очередь поиском публичности: «Смысл в том, что Паули, должно быть, умер».)

Паули понимал, что любое предположение о существовании новой элементарной частицы, которую никто не наблюдал, в высшей степени спекулятивно; в своем послании он писал, что такая частица маловероятна как потому, что ее никто никогда не видел, а значит, она должна слабо взаимодействовать с веществом, так и потому, что она должна быть очень легкой, чтобы рождаться при распаде наряду с электроном, имея в виду, что энергии, доступные при бета-распаде, очень малы по сравнению с массой протона.

Первой проблемой, возникшей у Паули в связи с этой идеей, оказалось выбранное им для частицы название. Когда в 1932 г. Чедвик экспериментально открыл частицу, которую мы сегодня называем нейтроном, – а это подходящее название для нейтрального родича протона, обладающего сравнимой массой, – для гипотетической частицы Паули потребовалось другое имя. Энрико Ферми, блестящий итальянский физик и коллега Паули, в 1934 г. нашел выход: он предложил изменить название этой частицы на нейтрино – итальянское словечко, означающее «маленький нейтрон».

Прошло двадцать шесть лет, прежде чем ученым удалось обнаружить нейтрино Паули; за это время крохотная частица вместе со своим более тяжелым родичем, нейтроном, заставила физиков полностью пересмотреть свои представления о силах, управляющих космосом, о природе света и даже о природе пустого пространства.

Глава 10Отсюда и до бесконечности: проливая свет на солнце

Подвигом добрым я подвизался, течение совершил, веру сохранил…

Тим 4:7

Физик Энрико Ферми не очень известен широкой публике, но это не мешает ему быть одним из величайших физиков XX века. Вместе с Ричардом Фейнманом он сильнее, чем кто-либо из остальных выдающихся фигур той замечательной эпохи в развитии физики, повлиял на лично мое отношение и подходы к этой науке, а также на мое понимание физики. Хотелось бы мне быть таким же талантливым, как эти двое.

Ферми родился в 1901 г. и умер в возрасте пятидесяти трех лет от рака, который, возможно, развился у него