Швингер воспринял идею Янга – Миллса всерьез. Должно быть, его привлекла математическая красота этой теории. В 1957 г., тогда же, когда было открыто нарушение четности, Швингер сделал дерзкое и на первый взгляд в высшей степени маловероятное предположение о том, что именно для слабого взаимодействия, отвечающего за распад нейтронов с превращением их в протоны, электроны и нейтрино, возможность существования полей Янга – Миллса может оказаться полезной, но в неожиданном и замечательном смысле. Он предположил, что наблюдаемая калибровочная симметрия электромагнетизма может оказаться всего лишь одной частью более масштабной калибровочной симметрии, в которой новые калибровочные частицы служат посредниками для слабого взаимодействия, вызывающего распад нейтронов.
Очевидное возражение против подобного рода объединения состоит в том, что слабое взаимодействие намного слабее электромагнетизма. У Швингера нашелся ответ на это возражение. Если каким-то образом новые калибровочные частицы окажутся очень тяжелыми – почти в тысячу раз тяжелее протонов и нейтронов, то взаимодействие, которое они могут переносить, будет действовать на еще более коротких расстояниях, намного меньших, чем даже размер ядра или даже отдельного протона или нейтрона. В этом случае, если вычислить вероятность того, что такое взаимодействие вызовет распад нейтрона, она окажется мала. Таким образом, если дальность действия слабого взаимодействия мала, то эти новые поля, сила взаимодействия которых с электронами и протонами на малых масштабах была бы сравнима с силой электромагнетизма, могли бы тем не менее на масштабах атомного ядра и более крупных проявляться намного слабее.
Грубо говоря, Швингер высказал дикую идею о том, что электромагнетизм и слабое взаимодействие, несмотря на вопиющие и очевидные различия между ними, представляют собой часть одной теории Янга – Миллса. Он считал, что фотон в принципе мог бы оказаться нейтральным членом комплекта из трех калибровочных частиц, необходимых по Янгу – Миллсу, если рассматривать изотопический спин как калибровочную симметрию; заряженные члены этого комплекта переносят слабое взаимодействие и выступают в роли посредников при распаде нейтронов. Почему при этом заряженные частицы должны обладать громадными массами, притом что фотон безмассовый, он понятия не имел. Но, как я часто говорю, недостаток понимания не свидетельствует ни о существовании Бога, ни об ошибочности гипотезы. Он говорит всего лишь о недостатке понимания.
Швингер был не только блестящим физиком, но и не менее блестящим преподавателем и наставником. Если у Фейнмана было всего несколько успешных учеников (вероятно, потому, что никто из них за ним не поспевал), то у Швингера, кажется, был настоящий талант вести за собой блестящих аспирантов. За свою жизнь он руководил более чем семьюдесятью аспирантами, и четверо его учеников стали впоследствии лауреатами Нобелевской премии.
Швингер заинтересовался возможной связью между слабым взаимодействием и электромагнетизмом в достаточной степени, чтобы рекомендовать эту тему для исследования одному из дюжины своих студентов. Шелдон Глэшоу окончил аспирантуру в 1958 г., защитив диссертацию по этому предмету, и еще несколько лет продолжал исследования в качестве сотрудника Национального научного фонда в Копенгагене. В своей нобелевской лекции двадцать лет спустя Глэшоу сказал, что он и Швингер планировали написать что-нибудь по этому вопросу после защиты Глэшоу, но кто-то из них потерял первую черновую рукопись и больше они к этому вопросу не возвращались.
Глэшоу вовсе не был копией Швингера. Да, он был блестящим ученым и обладал прекрасными манерами, но он также был нахален, игрив и шумен. Исследования Глэшоу не отличались математической акробатикой; их отличала скорее четкая сосредоточенность на физических загадках и интерес к новым возможным симметриям природы, которые могли бы их разрешить.
Когда я был юным выпускником-физиком Массачусетского технологического института, меня влекли к себе глубокие математические вопросы физики, и моя работа при поступлении в аспирантуру была посвящена им. Но прошло несколько лет, и природа математических исследований, которыми я занимался, начала подавлять меня. Я познакомился с Глэшоу в летней школе для аспирантов и подружился и с ним самим, и с его семьей – позже, когда мы с ним стали коллегами по Гарварду, эта дружба продолжилась. Через год после нашей встречи он взял творческий отпуск, чтобы провести его в МТИ. Для меня это был важный год, я тогда рассматривал альтернативные варианты, и он сказал мне: «Есть физика, а есть уравнения, и нужно понимать разницу». Этот совет подразумевал, что мне следует продолжать заниматься физикой. Когда я увидел, каким интересным делом он занимается и какую радость от этого получает, мне стало легче думать о том, чтобы и самому заняться чем-то подобным.
Как я вскоре понял, мне, чтобы добиться чего-либо в физике, нужно работать над вопросами, движимыми в основном физическими проблемами, а не математическими. Для этого не существует других способов, кроме как следить за текущими экспериментами и всегда быть в курсе новых экспериментальных результатов. Наблюдая за Шелли и за тем, как он занимался физикой, я понял, что он обладает поразительной способностью видеть, какие эксперименты интересны и какие результаты могут оказаться значительными или указывать на что-то новое. Отчасти это, несомненно, была врожденная способность, но в какой-то мере она базировалась на громадном опыте, на постоянных контактах с экспериментаторами и постоянном отслеживании всего, что происходит «на земле». Физика – эмпирическая наука, и терять связь с реальностью опасно для нас.
В Копенгагене Глэшоу понял, что если он хочет надлежащим образом воплотить предложение Швингера и связать слабое взаимодействие с электромагнитным, то просто объявить фотон нейтральным членом тройки калибровочных частиц, заявив, что два заряженных члена становятся массивными посредством какого-то неизвестного пока чуда, мало. Это не объяснит подлинную природу слабого взаимодействия и, в частности, тот странный факт, что слабое взаимодействие работает, судя по всему, только с левыми электронами (и нейтрино), тогда как электромагнитное взаимодействие не различает левые и правые электроны.
Единственным решением этой проблемы представлялось существование еще одной нейтральной калибровочной частицы в дополнение к фотону, которая сама по себе связывалась бы только с левыми частицами. Но эта новая нейтральная частица, очевидно, тоже должна была быть тяжелой, поскольку переносимые ею взаимодействия были слабыми.
С идеями Глэшоу физическое сообщество познакомил Мюррей Гелл-Манн в 1960 г. на Рочестерской конференции, поскольку к тому времени Гелл-Манн успел привлечь Глэшоу к работе в своей группе в Калтехе. Статья Глэшоу на эту тему, представленная в 1960 г., вышла из печати в 1961 г., но не вызвала сколько-нибудь широкого отклика.
В конце концов, в гипотезе Глэшоу по-прежнему фигурировали две фундаментальные проблемы. Первая была давно знакома: как могут частицы, переносящие разные взаимодействия, обладать разными массами, если калибровочные симметрии требуют, чтобы все калибровочные частицы не имели массы вовсе. Глэшоу просто, как и многие до него, высокомерно заявил во введении к статье: «Это камень преткновения, на который мы не должны обращать внимания».
Вторая проблема была более тонкой, но с экспериментальной точки зрения не менее серьезной. И нейтронный, и пионный, и мюонный распад, если их и в самом деле обеспечивали какие-то новые частицы, переносящие слабое взаимодействие, как будто требовали только обмена новыми заряженными частицами. До сих пор не наблюдалось никакого слабого взаимодействия, которое требовало бы обмена некоей новой нейтральной частицей. И если бы такая нейтральная частица действительно существовала, то, как показывали тогдашние расчеты, она позволяла бы прочим известным тяжелым мезонам, распадавшимся на два или три пиона (из-за которых и возникла первоначально путаница, в результате чего было обнаружено нарушение четности), распадаться намного быстрее, чем это наблюдалось в экспериментах.
По этим причинам гипотеза Глэшоу отошла на задний план; тем временем физиков все сильнее увлекал настоящий зоопарк новых частиц, вылетавших из ускорителей, и сопутствующая им возможность новых открытий. И хотя несколько ключевых теоретических ингредиентов, необходимых для завершения революции в фундаментальной физике, уже были на месте, это в то время было далеко не очевидно. То, что всего лишь за десять с небольшим лет после выхода статьи Глэшоу все известные взаимодействия в природе, за исключением гравитации, предстанут в новом свете и будут поняты, показалось бы в тот момент чистой фантазией.
А ключом ко всему послужила симметрия.
Глава 14Холодная застывшая реальность: страшно или красиво?
Из чьего чрева выходит лед, и иней небесный, – кто рождает его?
Легко испытывать жалость по отношению к несчастным обитателям Платоновой пещеры, которые способны узнать и понять все, что можно узнать о тенях на стене, за исключением того, что всё это – тени. Но внешность бывает обманчива. Что, если мир вокруг нас всего лишь подобная им тень реальности?
Представьте, к примеру, что вы просыпаетесь однажды морозным зимним утром и выглядываете в окно – а все стекло покрыто красивыми ледяными кристаллами, образующими на стекле странные рисунки. Вот примерно как на этой фотографии. Красота изображения поражает отчасти из-за замечательной упорядоченности на малых масштабах, которая сочетается с очевидной беспорядочностью на больших масштабах. Из кристаллов льда выросли великолепные древовидные структуры, выходящие из основания в самых разных направлениях и сталкивающиеся друг с другом под случайными углами. Контраст между упорядоченностью на малых масштабах и явным беспорядком на крупных наводит на мысль, что для крохотных физиков или математиков, живущих в замкнутом пространстве на оси одного из сфотографированных ледяных кристаллов, Вселенная выглядела бы совсем не так, как для нас.