Почему небо темное. Как устроена Вселенная — страница 25 из 29

Размер наблюдаемой части Вселенной превышает 10 гигапарсеков. Это выглядит парадоксальным, поскольку за время жизни Вселенной свет может успеть пройти лишь 14 млрд световых лет и поэтому кажется, что ее размер не может превышать эту величину. Однако Вселенная расширяется и поэтому, если мы наблюдаем изображение предельно далекой галактики с z =10 (после Большого взрыва к этому времени прошло лишь около 500 млн лет), то за время, пока ее излучение добиралось до нас, Вселенная очень сильно увеличилась в размерах и расстояние до галактики составило уже около 30 млрд световых лет или 10 Гпк. Расстояние до сферы последнего рассеяния, из которой мы наблюдаем фотоны реликтового излучения, равно 14 Гпк.

В качестве характерного размера Вселенной можно также взять, например, хаббловское расстояние lH, то есть такое расстояние, при котором скорость расширения Вселенной равна скорости света. Если расстояние от нас превышает lH, то скорость удаления объекта превышает скорость света, а, значит, мы никогда не сможем достичь этой галактики. Используя закон Хаббла, можно оценить, что lH = с/Н0= 4300 Мпк. Этому расстоянию соответствует красное смещение z ~ 1.5, а объекты с z > 1.5 для нас принципиально недостижимы. Может показаться странным, что мы видим излучение от столь быстро — со скоростью, превышающей с, — удаляющихся объектов. Противоречия здесь нет — фотон, странствуя от такой сверхсветовой галактики, будет по пути к нам входить в области пространства, удаляющиеся от нас со все меньшей и меньшей скоростью и, наконец, начнет приближаться.

Вселенная содержит ~1011 галактик, каждая галактика состоит из 1010–1011 звезд, следовательно, полное число звезд во Вселенной достигает 1021–1022 штук. Много это или мало? В столовой ложке воды более 1023 молекул, так что такую жидкую «Вселенную галактик» можно проглотить одним глотком. Полная масса Вселенной в пределах lH составляет ~ 1056 г или примерно 1080 масс протона.

Вынесенная в эпиграф фраза появилась в самом конце знаменитой книги Стивена Вайнберга «Первые три минуты». Это замечание неоднозначно и существует множество его толкований[30]. Воспользовавшись многозначностью этой фразы, я вложу в нее свой смысл: чем более подробно и детально мы изучаем Вселенную, тем менее понятно, почему она именно такая, а не иная. Но об этом в следующем параграфе.

2.8. За пределами нашей Вселенной

Вокруг столько миров, сколько способно уместиться у нас под шляпой.

Станислав Ежи Лец

Как мы увидели в предыдущем параграфе, наша Вселенная — довольно странное место. Действительно, ее крупномасштабные характеристики выглядят произвольными — почему, например, в ней именно столько темной материи и темной энергии, почему барионное вещество — это лишь небольшая «примесь» к другим ее составляющим, почему она столь велика или, в зависимости от вкуса, столь мала? Подобных вопросов можно задавать много. Кажется естественным, что рано или поздно мы должны узнать ответы, например, построив некую фундаментальную теорию, в которой все особенности Вселенной будут объяснены, так сказать, «из первых принципов». Однако уже сейчас существует подход, называемый антропным принципом, позволяющий ответить на подобные вопросы. С выводами, следующими из антропного принципа, можно не соглашаться, однако они, несомненно, очень интересны.

Давайте представим себе, что мы находимся в далеком прошлом, когда не было известно о существовании других звезд и планет. Проницательный исследователь, размышляя об окружающем его мире, мог бы обратить внимание на то, что этот мир удивительно комфортен для человека[31].

Эти удобства можно перечислять долго — например, на Земле тепло, полно пищи, легко найти естественные укрытия от непогоды и от разнообразных опасностей, реки и моря дают возможности для далеких путешествий. Если не считать, что все это кем-то создано специально для человека, то можно сделать вывод, что существует огромное количество других миров с самыми разнообразными температурными режимами и условиями для жизни, а мы живем в том мире, где условия для нас подходят.

Возможно, отчасти подобная логика привела ряд античных философов к выводу о множественности других, в том числе обитаемых, миров. Например, в III в. н. э. Ипполит так описывает взгляды философа-атомиста Демокрита: «Миры бесконечны по числу и отличаются друг от друга по величине. В одних из них нет ни солнца, ни луны, в других — солнце и луна большие, чем у нас, в третьих — их не по одному, а несколько. Расстояния между мирами не одинаковые; кроме того, в одном месте миров больше, в другом — меньше… В одном месте миры возникают, в другом — идут на убыль… Некоторые из миров лишены животных, растений и какой бы то ни было влаги».

В неподходящих условиях жизнь просто не появилась бы, и не было бы наблюдателей, рассуждающих о комфортности окружения. Создание гелиоцентрической системы, превратившее Землю в рядовую планету, а также открытие в последние годы огромного числа планет у других звезд, — все это подтвердило приведенные выше рассуждения.

Теперь вместо Земли рассмотрим Вселенную — насколько она уютна для нашего существования? Оказывается, очень! Самые разнообразные ее характеристики замечательным образом «подогнаны» для того, чтобы могла существовать жизнь, подобная земной. Например, все знают, что в нашем мире 3 пространственных измерения. Это не случайно. Как показал еще в начале XX века Пауль Эренфест, только в трехмерном мире возможно существование устойчивых планетных орбит и устойчивых атомов. Маленькое изменение массы электрона или разности масс протона и нейтрона привело бы к тому, что атом водорода стал бы нестабилен и основным веществом во Вселенной стали бы атомы гелия. Эволюция звезд радикально изменилась бы, и возникновение жизни стало бы невозможно. В физике еще много других эффектных примеров зависимости нашего мира от «шевеления» фундаментальных констант. Например, сильное увеличение скорости света приведет к тому, что при фиксированной энергии фотона, задаваемой разностью энергий атомных уровней, его импульс уменьшится, длина волны увеличится, изменится сечение рассеяния фотонов электронами. В итоге фотоны практически перестали бы взаимодействовать с веществом и, как пишет российский физик Л. Б. Окунь, «не было бы ни Солнца, ни электрической лампочки, чтобы светить, ни глаза, чтобы видеть».

Итогом подобного анализа является заключение, что наш мир имеет относительно небольшой запас прочности по отношению к изменению фундаментальных констант. Размышляя, подобно нашему древнему мыслителю, о «комфортности» Вселенной, можно сделать простой вывод — возможно, существует очень большая последовательность вселенных, в которых реализуются самые разнообразные наборы физических констант, и мы живем в той из них, в которой условия благоприятны для появления жизни земного типа. Это утверждение, по сути, почти тривиальное, и есть антропный принцип. На самом деле существуют десятки вариантов формулировки принципа, но в дальнейшем я буду иметь в виду лишь эту.

Антропный принцип обычно связывают с именем английского астрофизика Брэндона Картера. В 1974 году он предложил это название для утверждения, что то, что мы ожидаем получить из наблюдений, должно удовлетворять условиям, необходимым для присутствия человека в качестве наблюдателя. Скажем, мы не можем ожидать, что получим из наблюдений, что нейтрон в два раза легче протона, поскольку это противоречит существованию атомов и молекул и, следовательно, жизни нашего типа. Картеру принадлежит удачное название, однако он не был первооткрывателем самого принципа. В разном обличье эти соображения высказывались и использовались задолго до него. Например, Эдгар По использовал сходные рассуждения для обоснования большого размера и возраста Вселенной (см. предыдущую главу). Дух антропного принципа можно усмотреть и в построениях Людвига Больцмана, описавшего огромную Вселенную, в которой то тут, то там возникают гигантские статистические флуктуации, условия в которых очень сильно отличаются от средних. Если в какой-либо флуктуации существуют мыслящие существа, то они обнаружат, что их существование связано с крайне маловероятными условиями, сложившимися в пределах флуктуации и сильно отличающимися от окружающих областей Вселенной. В 1960-е годы четкие формулировки антропного принципа высказали советский космолог А. Л. Зельманов и американец Роберт Дикке.

Что нам дает антропный принцип? Как ни странно, у столь общего утверждения, есть вполне конкретные достижения. Например, я уже упоминал, что Стивен Вайнберг задолго до результатов групп Перлмуттера и Шмидта использовал его для обоснования большого значения космологической постоянной. Замечательным применением антропного принципа (по крайней мере так об этом пишут во многих учебниках по космологии) считают и предсказание Фредом Хойл ом в 1953 году существования энергетического уровня ядра углерода с энергией возбуждения 7.65 МэВ. Без этого уровня углерод образовывался бы в звездах гораздо менее эффективно, и наша Вселенная была бы столь им бедна, что возникновение жизни на основе углерода стало бы невозможным. Примерно через неделю после этого предсказания уровень возбуждения 7.65 МэВ был действительно открыт в эксперименте! Еще одним предсказанием антропного принципа может считаться и существование Мультивселенной[32] — совокупности огромного количества вселенных, в каждой из которых реализуется свой набор значений физических констант.

Мультивселенная — концепция довольно старая. Например, что-то подобное можно найти у Эдгара По в «Эврике»: «существует некая беспредельная последовательность Вселенных, более или менее подобных той, о которой мы имеем осведомленность…», «не имея доли в нашем происхождении, они не имеют доли в наших законах. Ни они не притягивают нас, ни мы их… Между ними и нами… нет влияний взаимных…». Своего рода Мультивселенной является и упоминавшийся выше мир Больцмана, состоящий из огромного числа отдельных «вселенных-флуктуаций».