Почему сердце находится слева, а стрелки часов движутся вправо. Тайны асимметричности мира — страница 27 из 86

iv – сокращение от inverted viscera. В 1971 году анатом Уильям Лейтон получил десять потомков первых iv-мышей и приступил к их разведению. В 1976 году ему удалось описать 441 потомка исходных десяти мышей, в дополнение к еще 507 мышам, описанным в более ранней работе 1959 года. К счастью, есть простой способ узнать, слева или справа сердце у крошечного новорожденного мышонка, – подождать 24 часа, и тогда крошечный желудок, обычно расположенный справа, окажется полон молока – он виден как белый пузырек под почти прозрачной розовой стенкой животика голого новорожденного. Если пузырек слева, значит, в мыши все наоборот и ее органы в situs inversus. Лейтон сосредоточился на тех мышах, которые, как точно было известно, получили от своих предков двойную копию iv-гена, гомозиготных, получивших этот ген от обоих родителей. Почти ровно у половины из 948 мышей, у 50,8 %, если быть точным, сердце оказалось справа, а у остальных – слева. 50 % – это как раз столько, сколько должно получиться, если предположить, что положение сердца справа или слева определяется случайным образом. И, как отмечает Лейтон, такую же долю situs inversus наблюдали Шпеман и другие в правых сиамских близнецах тритонов, лягушек и саламандр[157].

Вторую важную работу в 1976 году представил шведский врач-исследователь Бьёрн Афзелиус, наблюдавший пациентов с синдромом Картагенера. Хотя обычно его обнаруживают в детстве, этот синдром может проявиться и в среднем возрасте, как в случае с 48-летним лондонцем, который на протяжении четырех месяцев выкашливал значительное количество зеленой мокроты. За два дня до поступления в больницу он испытывал боль в левой стороне груди из-за острой пневмонии. В течение долгих лет у него ежедневно с кашлем выходило до полной чашки мокроты, чему, безусловно, способствовали и два десятка сигарет, которые он ежедневно выкуривал. Так что это было уже не первое его серьезное легочное заболевание, кроме того, он страдал от тяжелых приступов синусита. При обследовании и в ходе рентгеноскопии стало ясно, что у пациента не только сердце расположено в правой стороне груди, но и все органы размещены зеркально – как раз случай situs inversus. Помимо проведения анализов, обычных для пациентов с легочными заболеваниями, врачи также обратились к нему с просьбой, которая могла показаться очень странной – провести анализ спермы. На самом деле это был тонкий диагностический ход, так как под микроскопом стало очевидно, что сперматозоиды неподвижны. У пациента был классический случай синдрома Картагенера, в котором сочетается необычная триада симптомов: бронхоэктазия (производство большого количества инфицированной мокроты), синусита и situs inversus. Мужчины с таким синдромом бесплодны, в отличие от женщин[158].

В любом синдроме, сочетающем на первый взгляд странную комбинацию симптомов, должна существовать какая-то объединяющая их скрытая причина. Афзелиус предположил, что бронхоэктазия и синусит связаны с какой-то проблемой с ресничками респираторного эпителия. Этими ресничками покрыт эпителий и бронхов, и синусов носа – эти крошечные ворсинки регулярно колышутся, выгоняя вверх и наружу всевозможные загрязнения, попадающие в дыхательные пути и способные вызвать инфекцию. Проблемы возникают, если реснички не работают. Афзелиус изучал работу ресничек пациентов с синдромом Картагенера с помощью электронного микроскопа. У нормальной реснички очень характерный вид, известный как «строение 9+2» – две крохотные микротрубочки, спрятанные в центральной оболочке, и девять микротубул вокруг нее (рис. 5.16). С одной стороны каждой из девяти микротрубочек находится так называемая динеиновая ручка; динеин – это содержащийся в клетках белок, вызывающий их движение. Афзелиус выяснил, что у пациентов с синдромом Картагенера реснички дефектны, у них нет динеиновых ручек. Так как ресничка не в состоянии двигаться, легкие и синусы не очищаются от всяческих загрязнений, и в результате возникает инфекция. Мужчины, страдающие этим синдромом, бесплодны, поскольку динеиновых ручек нет и в хвостах их сперматозоидов, а неподвижные сперматозоиды не могут оплодотворить яйцеклетку[159].

Дефекты ресничек изящно объясняют большинство компонентов синдрома Картагенера, но как в эту картину вписывается situs inversus? Что общего между ресничками и положением сердца? Ключ в том, что среди братьев и сестер людей с выраженным синдромом Картагенера есть те, кто также страдает бронхоэктазисом, синуситами, а если это мужчины, то и бесплодием – но сердце у них слева, а не справа. Похоже, на каждого пациента с выраженным синдромом приходится один пациент без situs inversus. Другими словами, похоже, что реальный синдром заключается в сочетании бронхоэктазии, синусита, бесплодия и случайного расположения сердца, при этом у половины пациентов сердце окажется справа, а у половины – слева. И снова появляются эти 50 %. Возможно, нормальная работа ресничек каким-то образом подтверждает, что сердце – слева, а если реснички не движутся, то сердце оказывается или слева, или справа. Именно это и предположил Афзелиус в своей первоначальной работе. Однако эта теория столкнулась с проблемами, не в последнюю очередь связанными с тем, что никто не мог представить себе механизм, посредством которого реснички могли бы определять положение сердца. Еще больше вопросов возникало из-за того, что пациенты с похожим расстройством, известным как полинезийский бронхоэктаз, страдали бронхоэктазом, синуситом, дефектами ресничек, но не situs inversus. Более того, iv-мыши Лейтона демонстрировали прямо противоположное, поскольку никаких проблем с ресничками у них не было, да и у людей с situs inversus часто не было никаких других составляющих синдрома Картагенера. На этом этапе теория ресничек зашла в тупик и была практически забыта, и лишь некоторые работавшие в этой области специалисты упоминали о ней, как о еще одном курьезе латерализации, которых уже набралось немало[160].


Рис. 5.16. Сечение нормальной человеческой реснички (A) и реснички пациента с синдромом неподвижных ресничек, сходным с синдромом Картагенера (B). С – схема организации 9+2. Стрелка в А и C указывает на одну из динеиновых ручек, а стрелка в B указывает на место, где динеиновая ручка должна была быть – у пациента их нет, и поэтому реснички не могут двигаться. Вид реснички дан снизу вверх по ее длине, а динеиновые ручки размещены по часовой стрелке


В 1980-х годах вопрос о причине, из-за которой сердце расположено слева, снова стал интересовать биологов, хотя проведению экспериментов мешало отсутствие убедительной биологической модели. Положение изменилось в конце 1980-х с появлением двух совместных работ Найджела Брауна и Льюиса Уолперта. Первая открывалась подтверждением старого, но странного открытия: высокие дозы ацетозоламида вызывают дефекты конечностей у эмбрионов мыши, и при этом поражается практически вся правая сторона тела. При этом интересно, что, как далее показали Браун и Уолперт, у iv-мышей с situs inversus лекарство вызывало дефекты левой стороны. Каким-то образом это простое вещество различало, с какой стороны тела расположено сердце – факт, предполагающий, что на это указывает какой-то очень простой знак или индикатор. Но что бы это могло быть? В 1990 году Браун и Уолперт предложили теоретическую модель того, как развивающийся эмбрион мог бы различать левое и правое. На философском уровне модель предлагала все то же, о чем говорил Кант на двести лет раньше – что левое и правое можно различить, только если есть некая общая точка отсчета. Однако Браун и Уолперт сформулировали эту идею на практическом уровне, так, чтобы биологи ее поняли и захотели идти дальше. В частности, они предположили существование так называемой F-молекулы, которая могла бы ориентироваться относительно антериально-постериальной и дорсально-вентральной осей организма; при этом асимметричная молекула заодно указывала бы левое и правое. Одновременно с этим Браун предложил в феврале 1991 года провести в Лондоне в Фонде Ciba встречу небольшой, тщательно подобранной группы ученых самых разных специальностей, чтобы обсудить проблемы, – встречу, на которой Уолперт был председателем и которая продолжалась три дня. Хотя она называлась «Биологическая асимметрия и предпочтение рук», лучше было бы назвать ее «Двадцать девять ученых в поисках F-молекулы». При взгляде назад не возникает сомнений, что именно в этот момент лево-правая асимметрия стала солидной, обсуждаемой и, что примечательно, глубокой проблемой, которую предстояло решить биологии. Итак, в 1990-х годах, после полувекового слабого прогресса, биологи неожиданно снова продвинулись вперед благодаря появлению новых мощных инструментов, предоставляемых молекулярной биологией[161].

По-настоящему исследования в этой области начались с эксперимента, результаты которого в 1995 году опубликовали Майк Левин и его коллеги из лаборатории Клиффа Тэбина в Гарвардском университете. Они изучали развитие сердца в эмбрионе курицы, сосредоточившись на этапе, когда сердце и другие органы еще невидимы, а эмбрион выглядит совершенно симметричным. На этой стадии, примерно спустя 16 часов после того, как яйцо снесено, эмбрион курицы соответствует пятнадцатидневному эмбриону человека и представляет собой узкий гребень – первичную полоску. На переднем крае полоски формируется «гензеновский узелок», который медленно смещается назад, оставляя за собой клетки, из которых разовьется голова. Перед гензеновским узелком формируется проходящая по центру прямая трубка, из которой позже сформируется сердце. Хотя изначально она симметрична, первый видимый признак того, что сердце становится асимметричным, проявляется в слабом смещении влево, так называемом джоггинге, после которого трубка начинает в