Почему сердце находится слева, а стрелки часов движутся вправо. Тайны асимметричности мира — страница 32 из 86

[185].

Хотя белки, содержащие D-аминокислоты, не перевариваются, некоторые D-аминокислоты все же обнаруживаются в крови, попадая туда либо из пищи (особенно подвергнутой кулинарной обработке), либо как побочный продукт жизнедеятельности бактерий, живущих в толстом кишечнике (было доказано, что у крыс, выращенных в безбактериальной среде, содержание D-аминокислот ниже). Вне зависимости от происхождения D-аминокислоты долго считались нежелательным феноменом, особенно после работ 1940-х годов, показавших, что D-серин и D-аспартат повреждают почки, а у крыс замедляют рост. Однако организм, похоже, решил эту проблему. В 1935 году Ханс Кребс, позже удостоенный Нобелевской премии за открытие цикла Кребса, обнаружил фермент, который назвал оксидазой D-аминокислот, в больших количествах присутствующий в почках и нейтрализующий вредные D-аминокислоты так, чтобы они могли выводиться с мочой. Вплоть до 1990-х годов казалось, что на этом история свободных D-аминокислот заканчивается. Но в 1984 году японский ученый Ацухи Хасимото и его коллеги из Медицинской школы Токайского университета обнаружили высокое содержание D-серина в мозге крыс, а вскоре был найден и D-аспартат. Ни то, ни другое, похоже, не было результатом спонтанной рацемизации или крысиной диеты. Эксперименты привели к открытию в мозге нового фермента, серин-рацемазы, преобразующего стандартный скучный L-серин в новый волнующий воображение D-серин. Позже оксидаза D-аминокислот была найдена в мозге везде, где присутствовали D-серин и серин-рацемаза, и оказалось, что этот старый фермент, отчаянно ищущий себе интересное занятие, особенно эффективно справляется с удалением D-серина. Если в мозге содержатся ферменты, создающие D-серин, и ферменты, расщепляющие его, и при этом большое количество D-серина содержится в гиппокампе и в коре мозга, значит, роль D-серина должна быть очень велика. Хотя это еще до конца не ясно, но, кажется, D-серин участвует в настройке одной из самых занимательных нейротрансмиттерных систем, открытых в последние годы, NMDA, связанной с памятью, обучением, эпилепсией, а также с повреждениями головного мозга, приводящими к инсульту. Однако почему именно D-аминокислота оказалась столь важным нейротрансмиттером, пока остается предметом догадок[186].

Ранее обсуждаемые D-аминокислоты, встречающиеся в виде свободных D-аминокислот в мозге или по ошибке в результате самопроизвольной рацемизации, не нарушают традиционного представления о том, что белки у высших животных состоят только из L-аминокислот. Основная догма молекулярной биологии, которая гласит, что ДНК продуцирует РНК, которая продуцирует белки, имеет следствие, что, поскольку ДНК кодирует только L-аминокислоты, а трансфер-РНК несут только L-аминокислоты, то белки должны состоять из L-аминокислот. Это действительно так, но нужно иметь в виду, что, хотя белки могут возникать только из L-аминокислот, они не обязаны сохранять эту форму всегда. Если организм считает полезным заменить L-аминокислоту в белке на D-аминокислоту, то с точки зрения биологии нет ничего, что могло бы этому воспрепятствовать. В действительности этот процесс очень распространен у бактерий и грибов, которые содержат много белков, состоящих из D-аминокислот[187].

Клеточная стенка бактерий действует как физическая защита и поддерживает постоянную внутреннюю среду в жарких или сухих условиях. Бактериальные стенки часто содержат необычные аминокислоты, включая экзотические L-аминокислоты, не входящие в те двадцать, что кодируются генетическим кодом, а также D-аминокислоты, такие как D-аланин, D-аспарагиновая кислота, D-глутаминовая кислота и D-фенилаланин. Преимущество, вероятно, состоит в том, что обычные протеазы, ферменты, переваривающие белки других организмов, не могут переваривать необычные аминокислоты в белках клеточной стенки, и поэтому бактерии защищены от нападения. Проблема такого эффективного защитного механизма в том, что он неизбежно начинает гонку вооружений. Как бактерии с почти неусваиваемыми клеточными стенками заражают другие микроорганизмы, так и сами эти микроорганизмы выработали новый защитный механизм, производящий химические вещества, которые могут ингибировать рост бактерий. Наиболее известное из них было обнаружено сэром Александром Флемингом в 1928 году, когда он заметил, что на чашке для культивирования вокруг пятна плесени не было бактерий. Плесень продуцировала пенициллин, который обладал необычным свойством блокировать рост бактериальной клеточной стенки – другими словами, он препятствовал эффективной защите D-аминокислот в клеточной стенке[188].

Для простых организмов, таких как бактерии (прокариоты), нормально производить белки, содержащие D-аминокислоты, обычно для специальных оборонительных целей, но что насчет многоклеточных организмов (эукариот), к которым относятся растения, животные и, конечно же, мы сами? В этом отношении сложилось четкое суждение. В 1965 году в своей авторитетной книге по аминокислотам Альтон Мейстер писал: «В настоящее время нет никаких убедительных доказательств наличия D-аминокислот в белках растений и животных». Вполне возможно, что все бы так и считали, если бы не работы Витторио Эрспамера, который в 1962 году обнаружил в коже южноамериканской лягушки пептид под названием физалемин, оказавшийся мощным стимулятором гладкой мускулатуры. Хотя это первое открытие стало чистой случайностью, в последующие три десятилетия были предприняты усилия по анализу кожи амфибий со всего мира на наличие биологически активных пептидов. Для Эрспамера эта работа была не только любимым делом, но и способом покрыть боль утраты. В кратких биографических подробностях, так редко встречающихся в научных работах, Эрспамер пишет, что труд всей его жизни «дал результаты, намного превосходящие самые смелые ожидания. Это был долгий поиск, в котором незаметно пролетали месяцы и годы, и он стал единственным утешением в страшный момент, когда я трагически лишился своей восемнадцатилетней дочери Марии Луизы, сердца моего сердца»[189].

Работа Эрспамера подтолкнула многих ученых к исследованию обнаруженных им странных, загадочных и увлекательных пептидов. В 1990-х работу подстегнули два обстоятельных обзорных труда фармаколога Лоренса Лазаруса, оба с шекспировскими названиями, превозносивших жаб и лягушек и восхвалявших их место в истории культуры, народной медицине, языке и литературе и, конечно, в фармакологии. Из одного из этих трудов взято и название этой главы, цитата из «Как вам это понравится» (акт II, сцена 1):

Мы счастье и в несчастье обретаем,

Как драгоценный камень в голове

У жабы, ядовитой и поганой.

Вдали от света внятны стали нам

И лепет лип, и речи ручейков,

И говор гор, и смысл существованья[190].

Лазарус нашел свой драгоценный камень не в голове жабы, а в ее коже. А Витторио Эрспамер в своем несчастье нашел язык, на котором фармакология говорит в земноводных, живущих на деревьях, а лекарственную книгу – в лягушках и жабах, обитающих в ручьях и под камнями. Сегодня новые биологически активные пептиды, найденные в коже земноводных, исчисляются трехзначными числами, и конца им не видно. Но нас здесь интересует лишь одна группа веществ, дерморфины и дельторфины, в совокупности известные как опиоидные пептиды[191].

Слова Мейстера, в 1965 году утверждавшего, что D-аминокислоты не встречаются в белках растений и животных, были окончательно опровергнуты в 1981 году, когда сначала был открыт дерморфин, а затем еще несколько веществ, содержащих D-аминокислоты. И дерморфины, и дельтрофины содержат семь аминокислот, и в обоих случаях на второй позиции встречается или D-аланин, или D-метионин. По-видимому, наличие D-аминокислот критически важно, поскольку с заменой их на эквивалентную L-аминокислоту пептид становится совершенно не активен. D-аминокислота создает острый выступ в пептидной цепи, что позволяет сформировать ключ, подходящий ко многим биологическим замкам[192].

Дерморфины и дельторфины относят к опиоидным пептидам, потому что они оказывают на мозг такое же действие, как естественные опиаты, например морфин и героин. Фактически, в пересчете на массу, дерморфин в тысячу раз сильнее морфина и в десятки тысяч раз сильнее нейротрансмиттера энкефалина, участвующего в передаче болевых ощущений. Из дерморфинов и дельторфинов вполне можно создать заменяющие морфин сильные болеутоляющие, при этом не вызывающие привыкания и побочных эффектов – вялости и застоя пищеварительной системы. Конечно, злоупотребления возможны и с синтетическими лекарствами – достаточно заменить маковый сок простым пептидом. Действительно, к счастью или к несчастью, уже известно, что в коже жаб содержатся психоактивные вещества, и наркоманы в Австралии лижут высушенную кожу Bufo marinus, а в Америке курят высушенную кожу Bufo alvarius (журнал Newsweek назвал ее «дедушкиным галлюциногеном, столь сильным, что ЛСД в сравнении с ним – все равно что стакан молока»). Но едва ли в этом есть что-то новое. Во время традиционных шаманских обрядов индейцы матсес, живущие в верховьях Амазонки, вызывали у себя галлюцинации, посыпая раны на коже высушенным секретом жабы Phyllomedusa bicolo [193].

До сих пор белки, содержащие D-аминокислоты, у позвоночных встречались только в коже земноводных, но нет сомнений, что это не исключение. Помимо позвоночных D-аминокислоты обнаруживаются у многих других животных. Например, медлительные и красивые моллюски из семейства конус – это сложно устроенные машины смерти, привлекающие быстро плавающих рыб своими аппетитными на вид носиками. Внутри носика прячется одноразовый гарпунообразный зуб, который выстреливается и впрыскивает в жертву смесь ядов, вызывающих мгновенный паралич и судороги. После этого конус наползает на добычу и съедает ее. В состав сильнодействующего яда входит пептид контрифан, состоящий из девяти аминокислот, в середине цепочки которых находится D-триптофан, аминокислота, отличающаяся от входящей в дерморфины и дельторфины и расположенная иначе. Можно предположить, что белки, в состав которых входят D-аминокислоты, более разнообразны, чем считалось прежде. Последний пример D-аминокислотного белка обнаружен у австралийского воронкового водяного паука