Почему Сталин защищал Лысенко — страница 33 из 112

Нынешние генетики и иже с ними огрубляют ситуацию и заявляют, что мол, "вейсманисты-морганисты" утверждали, что результат выполнения программы (фентоип) зависит от ее текста, записанного на твердом диске (не отрицая, впрочем, факта машинной зависимости кода и того, что без компьютера программа не заработает) вторые — что части программы равномерно размазаны по пространству компьютера, а наиболее усердные последователи идеи (Линукспешинская, например) (речь идет о Лепешинской — С. М.) считают, что компьютер может самозародиться из металлолома, в который он превращен на фабрике вторсырья, так как любая его часть несет информацию о его конструкции и содержащихся в нем программах.” Во время обсуждения на форуме отмечалось также, что “идея самозарождения компьютера из металлолома ничем не умнее идеи самозарождения компьютерной программы путем случайных комбинаций произвольного кода”. Мол, тезис же Лысенко в том, что каждая мельчайшая клетка несет в себе наследственную информацию, аналогично утверждению, что каждый винтик компьютера (по крайней мере тот винтик, без которого компьютер не работает) несет в себе часть программы.

На самом деле вопрос ещё серьезней. У человека имеется 23000 белков. Каждый белок по размерам меньше, чем 1000 аминокислот, обычно 100–200. Примем, что в среднем один белок — это 1000 аминокислот. Тогда весь геном человека содержит 3000 × 23000 нуклеотидов. Одна аминокислота кодируется тремя нуклеотидами. Следовательно, все белки кодируются 23000000 битами информации. 23 мегабайта. Всего! Где оставшаяся информация? Бога сразу отбросим. Нет ответа.

Данный вопрос был решен академиком Лысенко. Он говорил, что каждая мельчайшая частичка клетки несёт в себе наследственную информацию. Итак, по Лысенко, основная информация записана и в белках, липидах, РНК и других частях клетки. Вспомним аналогию о сборке радиоприемника. Эта аналогия с радиолюбителем как раз и ложится в схему сжатия информации эволюцией. Схема умещается на диске, но вся проверенная эволюцией информация не уместится и на всех компьютерах и дисках. Собираешь по примитивной схемке, но за ней стоят миллионы разработок, вложенных в детали. Гены — это как простенькая схема для сборки радиоприемника из готовых деталей. Готовые детали и есть материнская клетка или материнский организм. Не будет правильно подобранных деталей, не будет радиоприемника. Не будет клетки, не будет нового организма.

Так и человек (биология) — имеется схемка сборки. Она работает только в чрезвычайно узком диапазоне условий. Подбор условий был осуществлен во время эволюции. Тогда же были отбракованы мириады вариантов белков и генов, которые не подходили для этого узкого диапазона. Поэтому хотя схемка и не содержит много информации формально, но за ней имеется мириады экспериментов, проделанных природой, и информация заключена в генах, но она негативная и ее не сразу видно.

В клетке есть мириады битов информации в виде взаимодействия белков. Имеется огромная информация в виде отбракованных условий существования и межбелковых взаимодействий. А подсчет взаимодействия дает колоссальные цифры. Все это создает чрезвычайно узкий коридор для реализации схематической информации, записанной в геноме. Шаг в сторону — неудача. Например, в генах нет комбинаций длинных (более 8 нуклеотидов) повторов нуклеотидов, которые были бы комлементары другим повторам внутри тех же генов или другого гена. Особенно нет последовательности двух разных комбинаций, которые бы при мутации разделяющего их нуклеотида давали бы более длинную комплементарную цепь. Причина проста. Белок не меняется, но комплементрные мРНК склеиваются и не могут выйти из ядра и клетка гибнет. Весь геном был прочищен на данный предмет в процессе эволюции.

Итак, в геноме, который считывается, содержится чрезвычайно ограниченное количество информации. Всего менее 23 МБ. Это меньше, чем информация, которая кодирует одно цветное фото высокого разрешения. Даже, если допустить, что где-то запрятана ещё информация, и вся информация (100 %) генома считывается, в отличие от того, что установлено во время расшифровки генома человека, то все равно количество этой информации очень мало (460 МБ) для того, чтобы кодировать такое высокоорганизованное существо, как человек.

Как же реализуется и с такой высокой точностью такая ограниченная информация для создания такого высокосложного существа как человек? Необходимо учитывать, что понятия "информация" в повседневно-бытовом значении и в том значении, которое вкладывается в это понятие математиками и информатиками, значительно отличаются. На самом деле, не нужно хранить где-то информацию о каждом атоме, каждой элементарной частице и ими управлять. А то как же получаются одинаковые звезды, галактики? В биологии как и в физике есть законы структурирования, вот по ним все и идет, не нужно хранить где-то "план" мироздания.

Отмечу, что хотя формально в геноме менее 23 МБ информации, система дает чрезвычайно высокий уровень воспроизводимости, потому, что любая крупная ошибка ведет к выбраковке. Систему можно представить в виде гигантского трехмерного информационного пространства, где во время эволюции найден очень узенький лаз, канал. Только если система будет все время идти в рамках стенок этого узкого информационного туннеля, то будет получена точная копия того существа, которое закодировано в геноме. Это очень узкий канал реализации. Реализация возможна только в одном единственном случае, если система пройдет внутри канала без отклонений, но если появляются отклонения, то идет гибель системы.

То есть построение новой особи возможно только в одном единственном случае, когда нет ошибок воспроизводства и нет значительного отклонения внешних условий. Стенки развития задаются стенками той среды, где идет развитие, а среда тестирована эволюцией и была отбракована. Шаг в сторону — стреляют. Идет выбраковка. Даже первое поляризованное деление яйцеклетки требует прикрепления к субстрату. Во взвеси не будет правильного деления. Точно также не будет геном человека развиваться, если его подсадить в яйцеклетку шимпанзе.

Жизнь возможна только внутри очень узкого канала, поэтому такая высокая воспроизводимость и такое сжатие информации. Отрицательная информация может быть представлена в виде ряда дырок-возможностей, как дырка от электрона в полупроводниках. Например, компьютер мозга строится в процессе реализации программы. Во время реализации идет построение тела компьютера, и только если он строится верно, реализация продолжается.

Как видим, академик Лысенко, выставляемый нынешними так называемыми генетиками в виде идиота, был гораздо ближе к истине в понимании того, как реализуется и хранится наследственная информация, чем они.

4.3. ГОРИЗОНТАЛЬНЫЙ ОБМЕН ГЕНЕТИЧЕСКИМ МАТЕРИАЛОМ

Согласно современным представлениям, горизонтальным или латеральным переносом генов называется процесс, при котором в организм инкорпорируется генетический материал другого организма без обработки (проверки) его в процесс эмбриогенеза.

Горизонтальный перенос генов — это любой процесс, при котором реципиент (получатель материала) получает генетический (видимо, сегмент ДНК — С. М.) материал от организма донора (посылателя) не через процесс полового размножения или клеточного деления. По аналогии, процесс полового размножения называется вертикальным переносом генов. Если организм получает генетический материал от своих предков, и при этом генетической материал проходит через процесс вирусной репликации, клеточного деления или эмбриогенеза, то такой перенос называется вертикальным переносом генов. Поэтому надо различать вертикальное и горизонтальное наследование. Горизонтальный перенос может быть естественным или искусственным. В последнем случае речь идет о одной из форм генетического инжениринга. В последние годы появляется все больше свидетельств, что горизонтальный перенос генов не является редким событием (176).

Горизонтальный перенос генов особенно широко представлен у бактерий. Он классифицируется на 1) трансформацию, которая получается в результате прямого попадания внутрь клетки чужеродного генетического материала; 2) трансдукцию, под которой понимается перенос генетического материала от одной бактерии к другой в помощью бактериофага, 3) бактериальная конъюгация, при этом перенос генетического материала происходит в результате контакта бактериальных клеток или передвижения кодирующих нуклеиновых кислот по особым мембранным, очень тонким трубкам, образующимся между клетками бактерий (203а); 4) перенос кодирующих нуклеиновых кислот с помощью особых вирусоподобных агентов-переносчиков. Горизонтальный перенос может включать также следующие механизмы: I. Целенаправленная передача ДНК от одного к другому организму

II. Случайное включение чужих генов в ходе починки ДНК или случайного захвата клеткой ДНК из внешней среды.

III. Перенос в составе вирусов, плазмид мобильных элементов

IV. Перенос двойных цепей РНК или матриксных РНК по межклеточным каналам в симбиотических системах типа растений.

Кроме того существуют независимые митохондриальные и пластидные системы передачи наследственной информации.

Обычно о наличии горизонтального переноса генов свидетельствует факт выпадения из филогенетического ряда генов (обычно для этого сопоставляют последовательности нуклеотидов и на основе компьютерной программы выстраивают ряд, в котором изменения нуклеотидов по ходу филогенеза приобретают плавность, без резких скачков) выпадает ген, имеющийся в каком-либо виде живых организмов или вирусов (176).

После того, как альфа-протеобактерии оказались внутри одной из клеток родоначальниц жизни и превратились в митохондрии, значительное число генов из геном митохондрий было перенесено в геном ядра. То же самое произошло, когда цианобактерии были захвачены в цитоплазму и превратились в пластиды растительных клеток (176).

В прекрасном обзоре Бока (176) приведено множество фактов, доказывающих, что горизонтальный перенос генов встречается от растения к растению, при этом в качестве переносчика может служить вирус, от бактерии к растению, от вируса к растению. Описан, например, такой эксперимент. Растения заражали бактериями, имеющими легко идентифицируемый биохимически ген. Затем воздействовали антибиотиками и бактерии погибали. Затем выделяли клетки растений и в их геноме нашли указанный ген (329).