Почему Сталин защищал Лысенко — страница 37 из 112

Интересно, но к одним генам метильных групп "пришивается" больше, к другим — меньше. Распределение метильных групп по генам (так называемый рисунок метилирования) зависит от того, насколько активно тот или иной ген используется.

Получается совсем как с «тренировкой» (упражнением и неупражнением органов), которое Ламарк считал причиной наследственных изменений. Поскольку "рисунок метилирования" передается по наследству и поскольку он, в свою очередь, влияет на активность генов у потомства, легко заметить, что здесь может работать совершенно ламарковский механизм наследования: "натренированные" предками гены будут и у потомства работать активнее, чем "ослабевшие" от долгого неиспользования (90). Метилированию подвергается и ДНК митохондрий. При этом митохондриальная ДНК метилирована по-разному даже в пределах одной и той же клетки.

Так называемый «профиль метилирования» определяет, какие из генов будут у данной ДНК активны, а какие — нет. При этом профиль метилирования меняется в зависимости от условий, в которых находится клетка. Таким образом, только изменяя профиль метилирования, можно менять экспрессию генома, никак не затрагивая нуклеотидную структуру ДНК. Если нормальный профиль метилирования был изменен, например, мощным воздействием токсичного химического агента, то это изменение может сохраниться в поколениях. Результат, как в случае с экспериментом на беременных крысах, может оказаться драматическим, хотя, повторим, сама ДНК остается нормальной и не несет никаких угрожающих жизни и здоровью потомства мутаций (241).

В ДНК могут встречаться необычные метилированные основания 5-метилцитозин и 5-метиладенин. Метилирование остатков цитозина стабилизирует спираль ДНК. Когда цитозин превращается в 5-метилцитозин его склеивание с гуанином становится крепче. Наличие метильной группы препятствует приклеиванию особых белков — транскрипционных факторов. Однако после дезаминирование он превращается в тимидин и возникает мутация. Пара нуклеотидов ЦГ заменяется на пару ТА. Поэтому остатки 5-метилцитозина — горячие точки мутагенеза.

Метилирование ДНК регулирует экспрессию генов и клеточную дифференцировку (332). Метилирование цитозина приводит к тому, что к ДНК приклеиваются белки, ингибирующие транскрипцию (305). Метилирование транскрибируемой части гена не приводит к полному подавлению его транскрипции (61), однако метилирование резко нарушает функцию белков синтезирующих информационную РНК, и это ещё один источник ошибок при синтезе белка. Метилирование снижает скорость и точность копирования информации. Клетка решила и эту проблему создав особые белки деметиляторы. Обычно метилирование выключает данный ген из системы и белок на нем не может синтезироваться. Метилирование ДНК, видимо, сохраняется при делении. На этом основано существование разных клеток и тканей в организме животных. Этот механизм можно рассматривать как часть эпигенетической (когда информация записана не на ДНК) составляющей генома (90).

Метилирование ДНК уменьшается с возрастом. Это явление было открыто советским ученым Ванюшиным (331, 333). При раке уменьшается метилирование ДНК (331, 333). Метилирование ДНК участвует в созревании клеток (275, 305).

Эксперименты показали, что если пометить ядро соматической дифференцированной клетки в цитоплазму яйцеклетки или цитоплазму, взятую из стволовых клеток, то изменяется уровень метилирования ДНК (344). Метилированная ДНК передается в дочернюю клетку, то есть не мешает удвоению ДНК (330). Метилирование цистеина и гистонов мешает перепрограммировать геном ядра для начала развития.

Особенно широко метилирование ДНК и гистонов распространено у растений и именно оно задействовано в изменении признаков при целенаправленном отборе при выведении сортов (см. ниже). У растений метилирование ДНК меняется при прорастании семян, при переходе к цветению и после заражения грибами и вирусами.

Однако, например, у круглого червя Caenorhabditis elegans метилирование цитозина почти не наблюдается, в то время, как у позвоночных обнаружен высокий уровень метилирования — до 1 % (20).

Таким образом, метилирование ДНК и гистонов влияет на процесс передачи наследственной информации по пути, в котором участие последовательности нуклеотидов ДНК минимально.

Когда же нуклеотиды ДНК подвергаются гликозилированию, то это также приводит к мутациям из-за прямого повреждения ДНК и инактивации систем репарации ошибок рекомбинации, а также вызывает повышенную ломкость хромосом.

4.8. МАЛЫЕ РНК

Не всегда метилирование, ацетилирование, гликозилирование… ДНК могут объяснить наблюдаемые эффекты переноса наследственной информации. Существенную роль во внегенетическом наследовании играют малые молекулы РНК, способные через склеивание с цепями нуклеотидов ДНК или матричной РНК регулировать копирование и передачу наследственной информации.

В последние годы в молекулярной генетике сделан ряд важнейших открытий. Одним из них является обнаружение молекул РНК, состоящих из двух цепей, наподобие ДНК. Эти молекулы синтезируются в ядре путем обычного механизма транскрипции с помощью РНК полимеразы II. Вначале данная молекула РНК, синтезированная в виде одиночной цепи, имеет шапочку в резко аденилированный хвост как и обычная матричная РНК. Однако из-за наличия комплементарных (если их поставить в противоположных направлениях) друг другу областей цепи нуклеотидов длиной как минимум 20 нуклеотидов и расположенных один за другим с интервалом как минимум 4–5 нуклеотидов формируется структура, похожая на шпильку с основанием в виде двойной цепи РНК длиной 20 и более нуклеотидов и петельки на верхушке, соединяющей обе цепи.

В ядре расположена специальная рибонуклеаза, способная резать двойные цепи РНК. Это белок под названием Дроша (Drosha) вместе с молекулами РНК и его партнером Паша (Pasha or DGCR8). Этот фермент отрезает шпильку длиной 70-100 нуклеотидов от синтезированной молекулы РНК и данная шпилька переносится в цитоплазму с помощью белка под названием экспортин 5. В цитоплазме шпилька режется на сегменты длиной 18–24 нуклеотида белком Дайсер (Dicer), который кооперируется при выполнении данной функции с белком ТРБП (TRBP). Затем эти короткие сегменты двойной цепи РНК взаимодействуют с крупным агрегатом белков, который называется РИСК (RISK). Комплекс включает в себя несколько белков из семейства Аго (у людей Ago1-4). Этот комплекс расплетает двойную цепь РНК и ослабляет у себя только одну из цепей. Вместе с данным сегментов РНК данный комплекс способен приклеиваться к тем молекулам матричной РНК, которые комплементарны цепи нуклеотидов данного сегмента (207). Если отделенная от основной вторая цепь короткого сегмента двойной РНК не успевает быть разрезанной на нуклеотиды цитоплазматическими РНКазами, то она может попасть в ядро и приклеится к комплементарному участку синтезируемой РНК или ДНК, если он в данный момент открыт (это бывает в момент репликации, когда ДНК удваивается. Малые молекулы РНК после своего расплетания могут приклеиваться к "гену ДНК и вызывать его "молчание", блокируя его трансляцию (351). Тем самым данный ген перестает функционировать.

Так называемые малые РНК (это молекулы РНК, содержащие участок с двойной цепью) участвуют во внегенетическом переносе (178). Они передают информацию о том как надо изменить белки хроматина, чтобы адаптироваться к внешним условиям.

Передачи признаков посредством двойных цепей РНК может осуществляться через половые клетки.

У одноклеточных животных обнаружено, что с помощью малых двойных РНК может осуществляться удаление гена из генома. Имеются механизмы по переносу малых двойных РНК в ядро с последующим целенаправленным удаление генов, против которых направлена комплементарность. Открыты механизмы участвующие в переносе малых двойных молекул РНК в ядро с целью целенаправленного удаления генов из генома (278). Даже без наличия межклеточных мостиков, как это имеется в растениях, молекулы РНК легко переносятся у млекопитающих в сперматозоидах. А что говорить о клетках растений, которые все соединены межклеточными мостиками. РНК содержащаяся в половых клетках, и в особенности в сперматозоидах животных служит одним из механизмов для внегенетического наследования. Она служит эпигенетическим регулятором и содержит сигналы, передающиеся через поколения (196).

4.9. МЕТИЛИРОВАНИЕ И АЦЕТИЛИРОВАНИЕ ГИСТОНОВ

Хроматин сам по себе несет информацию, которая не записана в ДНК. Она может быть довольно стабильной и передаваться из поколение в поколение (255). Свойствами внегенетического наследования обладают следующие свойства хроматина: 1) распределение и организация в пространстве метилирования и ацетилирования гистонов, 2) его трехмерная организация.

Для изменения степени в взаимодействия гистонов с ДНК необходимы биохимические превращения гистонов (это белки, образующие диски, на которые накручивается двойная спираль ДНК) и ДНК, которые само по себе требуют энергии АТФ. Такие модификации ведут к сборке, перемещению и разборке нуклеосом и обмену гистонов в них (189, 255).

В ДНК имеются определенные сегменты, которые имеют большее сродство с ДНК. Поэтому одни нуклеосомы могут быть гибкими, другие менее гибкими (255). В целом же нуклеотидные последовательности ДНК не определяют положение нуклеосом в ядре (349). Однако ферменты, которые обеспечивают ремоделирование могут быть чувствительны к тому, как расположены нуклеотиды в ДНК (255).

Белковые комплексы нуклеосом могут двигаться по ДНК и изгибаться, что делает хроматин гибким (189). Упаковка нуклеосом в трехмерные структуры более высокого уровня также изменяет доступность ДНК для белков, склеивающиеся с ДНК. Упаковка ДНК в нуклеосомы делают ее менее доступной для белков и других молекулярных машин, которые считывают с неё информацию. Хотя некоторые ядерных белки легче приклеиваются к ДНК, накрученной на нуклеосому. Плотная упаковка хроматина защищает ДНК от повреждений. Уменьшение степени конденсации хроматина связано с сильным ацетилированием гистонов (255).