Почему Сталин защищал Лысенко — страница 42 из 112

я обвинение в лабильности и едва ли в большей стабильности, чем стабильность куска сахара, растворяющегося в чашке кофе" (The Journal of Heredity, 1944, v. 35, № 11)." (конец цитаты). (МОЙ КОММЕНТАРИЙ: обратите внимание на прекрасное знание выступающим англоязычной литературы).

Итак, хотя формальные генетики и пытались дать оговорки к определению гена, в главном они сходились — ген это неизменная часть хромосом. Лысенко же критиковал подобные представления.

5.2. РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ГЕНЕ. ИСТОРИЧЕСКАЯ СПРАВКА

Давайте посмотрим, кто был в то время более прав. Для этого нам придется понять, а что сейчас молекулярными биологами понимается под словом ген и есть ли вообще те неделимые кирпичики, кодирующие белки; кирпичики, которые Морган предлагал считать генами? Фенотип подавляющего большинства организмов одного и того же вида чрезвычайно стабилен и имеет замечательную воспроизводимость. Почему? Этот вопрос давно интересовал ученых-биологов.

Дарвин говорил о неких гипотетических элементах, геммулах или геммулесах (единицы пангенеза по его теории пангенеза), передающих наследственные свойства. По мнению Дарвина, от всех клеток организма отделяются мельчайшие частицы — "геммулы", которые, циркулируя с током крови по сосудистой системе организма, достигают половых клеток. Затем, после слияния этих клеток, в ходе развития организма следующего поколения геммулы превращаются в клетки того типа, из которого произошли, со всеми особенностями, приобретенными в течение жизни родителей. Отражением представлений о передаче наследственности через "кровь" является существование во многих языках выражений: "голубая кровь", "аристократическая кровь", "полукровка" и т. д. Мендель называл эти единицы элементами.

В 1871 году английский врач Ф. Гальтон (F. Galton), двоюродный брат Ч. Дарвина опроверг своего великого родственника. Он переливал кровь черных кроликов белым, а затем скрещивал белых между собой. В трех поколениях он "не нашел ни малейшего следа какого-либо нарушения чистоты серебристо-белой породы". Эти данные показали, что по крайней мере в крови кроликов геммулы отсутствуют".

В 80-е годы XIX-го века с теорией пангенезиса не согласился Август Вейсман (A. Weismann). Он предложил свою гипотезу, согласно которой в организме существуют два типа клеток: соматические и особая наследственная субстанция" названная им "зародышевой плазмой", которая в полном объеме присутствует только в половых клетках. Для объяснения феномена наследования Вейсман предположил существование особых самовоспроизводящихся элементов, которые детерминируют (определяют) свойства организма. Он назвал эти элементы детерминантами.

В 1889 г. ещё до своего переоткрытия "законов Менделя" ДеФриз опубликовал книгу "Внутриклеточный пангенез", в которой он постулировал, что каждый специфический признак в процессе наследования имеет свой наследственный переносчик, частичку.

Он назвал эти частички пангенами. Де Фриз писал, что как физика и химия основана на молекулах и атомах, так и биологические науки должны проникать до самых этих элементарных единиц для того, чтобы объяснить ими комбинации феноменов живого мира.

Идея, как говорится, уже давно витала в воздухе. Наконец, в 1909 г., чтобы объединить все эти названия Йоханссен (Johannsen) ввел термин ген. Это слово использовалось для единичных элементов, факторов, или аллеломорфов в гаметах. Слово ген происходило от наименования самой науки — генетики. Йоханнесен определил ген как специфические условия и детерминанты, которые присутствуют (в половых клетках — гаметах) в виде уникальных, отдельных и поэтому независимых единиц и на основе которых специфицированы (определены) свойства организма (“special conditions, foundations and determiners which are present [in the gametes] in unique, separate and thereby independent ways [by which] many characteristics of the organism are specified” [246. С. 124]). Йохансен понимал, что за словом ген в то время не стояло ничего существенного, но он считал, что слово ген имеет смысл и в реальности, особенно в рамках Менделизма.

В 1910 году Морган с сотрудниками описали плодовых мушек с белыми глазами. “Последующие исследования Моргана по передаче фенотипа белых глаз стали основой хромосомной теории наследования, связавшей отдельные единицы хромосом, которые он [Морган] называл генами, с наследованием признаков (traits) в потомстве и объяснившей механизм менделевского [типа] наследования”. За эти выдающиеся (изменяющие основы существовавшей тогда парадигмы) работы в 1933 году Морган получил Нобелевскую премию в области физиологии и медицины. (327, С. 591).

В том же 1933 году Морган заметил, что среди генетиков нет согласия насчет того, являются ли гены реалиями или это чистая фантазия. Для самого Моргана гены являлись биологическими аналогами молекул и атомов в химии и физике. Гены ему представлялись как некие гипотетические шарики на бусах, шарики диаметром несколько микрометров, в которых содержится некое неизменяемое от внешних воздействий наследственное вещество и которые кодируют указанные фенотипические характеристики: цвет, форму, расположение и т. д. Считалось, что гены-шарики располагаются линейно (279).

В те времена гены рассматривались в качестве единиц функций, которые идентифицировались генетическими методами (цвет цвет цветков, форма крыльев, число и форма колоний бактерий на чашке Петри. Этот анализ не имел ничего общего с ДНК или РНК. Имелась в виду исключительно функция, а точнее классификационный признак, рожденный с помощью человеческого языка (309)

Впервые высказали гипотезу о том, что гены содержатся в хромосомах Суттон и Бовери в 1902 г. (Цитируется по 307). Хромосомы не видны во время интерфазы (промежуток между делениями клеток). Однако Бовери доказал, что хромосомы сохраняют свою физическую интегрированность во время интерфазы. Хромосомная гипотеза Сутона и Бовери произвела эффект разорвавшейся бомбы, поскольку было окончательно доказано, что хромосомы — носители генетической информации в лаборатории Блэйкесли (173, 174, 315). Работая с одним из видом растений (Datura stramonium), имеющим 12 пар хромосом, Блэйкесли получил чистые линии мутантов, у которых кроме обычных 12 пар хромосом имелся небольшой кусочек из разных других пар. Все 12 линий имели разный фенотип. Эта же гипотеза была доказана в лаборатории Моргана позднее. В первом случае В 1921 г. Блэйкесли (174) сообщил о неменделевском типе наследования.

В 1928 году Гриффифс (225) открыл, что нечто, имеющееся в вирулентной бактерии, может быть перенесено в в живую невирулентную, болезнетворную бактерию и последняя может стать болезнетворной. Гриффит не знал, чем определяется трансформация и говорил о "трансформирующем начале". Только в 1944 г. было открыто, что это вещество может быть разрушено ДНК-азой, т. е. ферментом, который специфически режет ДНК (161).

В 1935 г. Бидл и Эфрусси изучали, как мутации в генах плодовых мушек дрозофил влияют на окраску их глаз и обнаружили, что различные мутации приводят к прекращению синтеза различных предшественников в пути биосинтеза глазного пигмента. Был сделан вывод: в норме гены обеспечивают наличие ферментов, осуществляющих биохимические реакции (226).

В 1941 г. тот же Бидл но уже с Татумом (164) открыли, что мутации в генах могут вызвать дефекты в метаболических путях. Что привело к созданию концепции один ген — один фермент. Но она оказалась тоже не совсем верной.

В 1944 г. Эйвери с соавторами (162) доказали, что ДНК является носителем наследственной информации в пневмококках. ДНК определяла биохимическую активность пневмококков и их специфические черты. Но в то время бактериям вообще отказывалось в праве иметь наследственную информацию, так как в них нет хромосом. Более того, в то время не все были убеждены, что то же самое имеет место быть в мире растений и животных.

В 1952 г. Херши и Чейз (232) показали, что в бактериофагах белки и нуклеиновые кислоты функционируют независимо друг от друга. А в 1955 г. ими же было обнаружено, что вещество переносимое бактериофагами из одной бактерии в другую есть ДНК (233). Тем самым была окончательно доказана роль ДНК, как хранителя наследственной информации.

Долгое время генетики считали, что гены работают постоянно и в одной и той же манере. О том, что подобная интерпретация может быть не верна, было предположено ещё Морганом. Он выдвинул гипотезу о батареях генов, которые синхронизируются в процессе развития. Однако только в 60-х годах стало ясно, что гены работают не все время — они включаются и выключаются в зависимости от специфических стимулов.

В 1961 году французские биологи Джакоб и Моно (243, 244) выдвинули гипотезу оперона — батареи генов, регулируемых одним регуляторным геном. Несколько генов могут функционировать как единый комплекс, названный опероном.

Они обнаружили, что у кишечной палочки одна мутация может приводить к исчезновению активности сразу нескольких генов. Для того, чтобы использовать в качестве пищи молочный сахар — лактозу, E. coli применяет сразу три фермента. Была обнаружена мутация (изменение в последовательности нуклеотидов ДНК), которая находилась вне этих трех генов, но приводила к тому, что активности всех трех ферментов отсутствовали и такие мутантные клетки не могли расти на среде с лактозой. Выяснилось, что эти три гена транскрибируются ДНК зависимой РНК полимеразой без остановок (ДНК зависимая РНК полимераза — фермент, осуществляющий синтез РНК на матрице ДНК, далее для краткости — РНК полимераза). В результате образуется единая длинная молекула матриксной РНК (такая молекула непосредственно используется рибосомой для синтеза белка), которая кодирует все три соответствующих фермента.

Тем самым Джакоб и Моно показали, что ген не просто функционирует — он должен активироваться или инактивироваться. То есть для обычных генов нужны гены регуляторные. Регуляторные белки приклеиваются к ДНК с целью контроля экспрессии (интенсивности синтеза) генов. Оперон представлял собой программу экспрессии генов. Возникли понятия генов-регуляторов.