Многофункциональность белков — другая проблема для формальной генетики. Белок может функционировать в разных функциональных путях в зависимости от контекста (248. С. 64). В организме человека распространены белки с двумя функциями, совершенно независимыми друг от друга. Это, например, белок БАРС, который участвует в регулировании транскрипции генов и одновременно в цитоплазме участвует в функционировании белковой машины, обеспечивающей отщепление пузырьков от мембран (339).
Функция структурного или каталитического белка зависит не только от последовательности нуклеотидов, но и от окружающего генетического контекста, например, от структуры хромосомы, в которую ген попал, если хромосома в данной клетке конденсирована, то ген в одной хромосоме совсем не читается, а в другой может читаться. Если он есть в другой хромосоме, то он читается. Уровень синтеза определенного белка требует клеточной регуляции. Надо знать, какой белок и когда синтезировать. И это зависит от того, в каком состоянии находится ДНК, нет ли метилирования цитозина?
Наличие интенсивного редактирования незрелой матричной РНК (считывание и замена кодонов в РНК зависят от целостного генома. Все это наследуется), наличие регуляторных механизмов на этапе синтеза белков, наличие посттрансляционной модификации белков резко затрудняет не только структурное, но и функциональное определение гена. Все это резко затрудняет даже определение гена как структурной единицы генома. В результате всех этих открытий ген потерял свою спецификацию и свойство хранения информации стабильность. До сих пор гены называют мозгом клетки, а это в корне не верно.
Было обнаружено, что гены (даже в самом современном понимании) не автономны, имеется координированная программа синтеза белков и ее исполнение контролируется. ДНК сама по себе не может передавать информацию от одного поколения к другому без искажений (248. С. 145). Только 82,5 % глобальной вариабельности фенотипа зависит от генотипа (348). Между тем организм с огромной точностью проходит по стадиям своего индивидуального развития и это происходит несмотря на возмущения, поступающие из внешней среды. Это цепь реакций с обратной связью и чувствованием (тестированием) окружающей среды. Стадийность развития зачастую зависит от присутствия в нужном месте и в нужное время только нескольких молекул нужного белка (248. С.105).
Но и этими сведениями не исчерпываются сложности и противоречия в генетике. Оказалось, что в геноме человека имеется масса ДНК, которая не используется для синтеза белков. Белки кодируются генами, которые представляют собой не более 2 % от генома (295). Только 1,2 % нуклеотидов в геноме человека кодируют экзоны (259, 334). Только 1–2 % генома считывается и реализуется в виде различных молекул РНК (206). В геноме человека существуют обширные (размером до 3 мегабайт) области так называемых “пустынь”, которые не содержат генов вообще. Их роль остается неясной (262, 334).
В интронах и в молчащих зонах генома найдены так называемые псевдогены. Они имеют структуру нормальных генов, но не транскрибируются, то есть на них не синтезируется РНК (217). С другой стороны, открыта выраженная вариабельность в структуре генома. Вариабельность не в одном нуклеотиде, а в больших кусках цепи ДНК в размере от килобайт до мегабайт. Эта вариабельность не видна при цитологическом исследовании хромосом. Она была названа вариабельностью в числе копий гена (320).
Более того, обнаружено, что в клетке имеется большая коллекция транскриптов, так генетики сейчас называют РНК, только, что синтезированную на основе ДНК), которые не используются для синтеза белка. Были открыты так называемые транскрипты (РНК только что синтезированная на ДНК) неизвестной функции (219). В 2005 г. было открыто явление, слияния двух отдельных мРНК с образованием единой мРНК, из которой готовился один белок (175).
Наконец, установлено, что 1) изменение относительной концентрации мРНК часто не меняет уровень синтеза. И наоборот, концентрация белка в цитоплазме может меняться независимо от концентрации мРНК; 2) изменение концентрации отдельного белка не изменяет функциональную активность органеллы; 3) изменение специфической активности белка in vitro (ин витро, то есть в пробирке) часто не отражает соответствующих изменений в соответствующих реакциях в клетке (260).
Одна и та же наследственная информация может давать совершенно разный фенотип на уровне клеток. Нет разницы в фенотипе, если из генотипа удалить один ген, Это верно не для всех генов, но для большинства. Например, удаление гена Эпс15 (Eps15), который участвует в формировании особого белкового покрытия на поверхности мембран внутри клеток — клатрина, не вызывает практически никаких фенотипических изменений. Для их выявления нам пришлось предпринять можно сказать героические усилия чтобы выявить минимальную разницу в строении терминалей нервных клеток (мои собственные наблюдения).
Клетки с совершенно одинаковым генотипом могут выглядеть по разному. Об этом свидетельствуют эксперименты по выращиванию вне организма клеток разных органов и клонирование животных (см. ниже). С другой стороны, клетки, отличающиеся по своему генотипу, могут иметь почти идентичный фенотип. Отличия начинают проявляться при резком изменении факторов внешней среды (248).
Если добавить лишнюю копию гена, то опять никакой разницы не будет. Однако если добавить лишнюю хромосому, то возникает повреждения фенотипа, например трисомия по 21 хромосоме, одной из основных хромосом в геноме, вызывает синдром Дауна. Казалось бы лишние гены не мешают, но, значит, нужно иметь правильное соотношение между числом синтезируемых с разных генов белков.
Но и это ещё не все. Многие белки имеют перекрывающуюся функцию. Если, например, убрать из клетки белок синтаксин 5, один из белков группы СНАРЕ, то есть белков, участвующих в сближении мембран внутриклеточных мембранных органелл для их слияния между собой, то клетка выживает, так как СНАРЕ из других, ближайших, ступеней внутриклеточного транспорта ее замещают, смещаясь на место, где раньше работал синтаксин 5 (276).
Описан механизм транскрипционного сайленсинга и посттранскрипционного сайленсинга генов (на обыденном языке это звучит так. Описана возможность выключения гена в процессе считывания информации с ДНК на РНК и выключения гена в период уже после считывания информации с ДНК).
Шререр и Йост (309, 310) предложили все гены разделить на 1) структурные белковые гены из них синтезируются белки, ферменты, структурные белки, 2) гены, на основе которых синтезируются белки, участвующие в регуляции функции других белков, и нуклеиновых кислот, 3) структурные РНК гены, гены, на основе которых синтезируются молекулы РНК, для рибосом сплайсосом, тРНК и нуклеолярные РНК. Часто они обладают свойствами ферментов. 4) гены, на основе которых синтезируются РНК, играющие регуляторную функцию. Например, малые интерферирующие РНК (чаще всего это короткие РНК в виде двойной цепи). Гены регуляторы могут находится далеко от генов, которые они регулируют (206).
Итак, мой очень и очень краткий анализ литературы показывает, что в генетике почти ничего не осталось от тех бусинок-шариков, которыми обозначил гены Морган.
5.5. ПРОГРАММА РАЗВИТИЯ
Новым направлением в молекулярной биологии стало использование термина генетическая программа вместо слова ген. Термин генетическая программа заимствован из области компьютерных программ. Она приравнивает генетический материал яйца магнитной записи на диске компьютера, где отражается (при выходе из программы) опыт ее использования. То есть она при каждом цикле чуть переписывается, будучи в целом одной и той же. В генетической программе равноправной или, по крайней мере, не менее существенной является информация, содержащаяся в цитоплазме яйцеклетки и центриоле (особая органелла, которая постоянно находится в центре тяжести клетки) сперматозоида. Реализация генетической программы предписана ее наследственностью, подобранной во время формирования вида (290).
Появление возможности использовать полную информацию о геноме привело к возникновению функциональной геномики, вместо структурной геномики. Было предположено, что "гены" (условное название) включаются-выключаются через их взаимодействие во время эмбрионального развития. Точно также весь геном включается и выключается в зависимости от самого развития, что позволяет исправлять ошибки.
Ещё более точен термин "программа развития". Впервые термин "программа развития" ввел М. Аптер (цит. по 248). По его словам, гены — аналоги субпрограмм по синтезу различных белков. "Цитоплазма содержит программу, специфицирующую природу и последовательность операций, комбинирование с множеством специализированных различных форм этих событий, которые проявляются во время самого развития." В число показателей наследования вошли такие характеристики, как время и пространство (295). Для обозначения всех различимых модулей нуклеиновых кислот был предложен специальный нейтральный термин нуон (184).
По сути, понятие "программа развития" похоже на компьютерные программы, которые восстанавливают свою работу даже, если случаются проблемы — такая программа может удалять и исправлять случайные ошибки. Это интерактивная программа, которая отслеживает окружающую обстановку и в зависимости от окружающей ситуации включает ту или иную компенсационную программу. При этом сами гены есть программы, которые реализуются только с участием других программ. Не может одна программа все обеспечить. Наследственная информация реализуется через взаимодействие белков, не через один белок, а через взаимодействие НЕСКОЛЬКИХ (до тысяч) белков. Поэтому прямой связи между геном и признаком не может быть даже теоретически. Любая информация, заложенная в гене, ВСЕГДА опосредуется через весь геном. Если нет полного набора программ, то все встанет. Геном — как бы набор компьютерных программ, которые взаимодействуют друг с другом. Очень важна совместимость генов-программ друг с другом и с цитоплазматическими факторами наследственности. Мутации ведут к ошибкам взаимодействия программ.