Почему Сталин защищал Лысенко — страница 47 из 112

Данный парадокс взывал возражения даже у неспециалистов. Даже самоучка, но выдающийся практик Терентий Мальцев понял неверность идеи. Вот что пишет по этому поводу Мальцев: "Я часто задаю себе вопрос, что было бы с генетикой и генетиками, если бы их не тревожили такие люди, как Т. Д. Лысенко. Нашли бы генетики выход из того тупика, в который их завела гипотеза независимости генов. Генетика… утверждает, что на каждый признак, или группу признаков, есть "ген" и группа "генов". Я и спрашиваю, сколько же может быть у организма, тем более у многоклеточного признаков? Я думаю, вряд ли можно для их подсчета набрать достаточно цифр, могущих выразить число, переваривающееся в человеческой голове. И вот, когда задумываешься над такими вопросами, то поневоле удивляешься фантазии генетиков, которые ведь должны принимать такое количество ген в хромосомах, которого не выдерживает никакая фантазия (136)". Терентий Мальцев совершенно правильно подметил, что признаков столько, что для того, чтобы все они кодировались своими собственными генами, требуется наследственное вещество невероятной длины.

А теперь несколько цитат, отражающих различие во взглядах на существование прямой связи между геном и признаком, которые высказывали спорящие стороны на сессии ВАСХНИЛ. Формальный генетик академик П. М. Жуковский объяснял на сессии: "Мендель никогда не разрабатывал эволюционной теории. Он был скромным исследователем, вся работа которого состоит из двух опубликованных небольших статей, одна посвящена гороху, другая — ястребинке. В первой работе он показал некоторые закономерности наследования. Многие биологи знают, что эти закономерности проверены десятки тысяч раз на самоопылителях. Я приведу один только факт. Ветштейн сравнительно недавно проделал очень интересную работу. Он скрестил две различные разновидности мха фунария. Мы знаем, что у мха из спор появляются настоящие зеленые листостебельные растения. Ветштейн вырезал в спорогонии гибрида кусочки ткани и вырастил их в целые растения, т. е. он брал ткань из гибридных материнских клеток спор и каждый раз получал одинаковые растения первого поколения гибрида, сходные между собой потому, что редукции хромосом еще не было. Он делал это в лабораторных условиях; условия были одинаковые, и получались сходные растения. Когда же Ветштейн переходил к выращиванию клеток диад и тетрад, т. е. после редукционного деления, то из спор каждой тетрады он получал четверки растений, которые имели один и тот же тип явственного расщепления. Следовательно, в редукционном делении произошло расхождение родительских признаков по правилам Менделя".

Во время выступления формального генетика профессора Раппопорта ему был задан вопрос из зала: "Как вы сейчас отвечаете на вопрос о наследовании приобретенных свойств?" И. А. Раппопорт ответил: "Я полагаю, что внутренний механизм генного действия заключается в том, что ген, каждый ген, в сущности, соответствует одному определенному энзиму, одной определенной энзимной системе. Это сейчас показано в ряде опытов на некоторых организмах низшего порядка — на бактериях и грибках".

Правды ради, надо отметить, что, как всегда, и формальные генетики и мичуринцы огрубляли взгляды оппонентов. Но на то и политическая дискуссия.

Например, американский генетик Меллера, которого Алиханян охарактеризовал как типичного “формального генетика" писал в статье, опубликованной в 1947 г.: "… нет того положения, что один только ген определяет признак. Это элементарно и неправильно. Признак как законченное образование — результат развития всей клетки, развития организма и очень большого влияния внешней среды”.

Академик Петров сообщил на сессии: "… в своей статье — "Проблема гена в современной генетике" — автор Алиханян совершенно бессовестно пытался подкрепить многочисленными цитатами из классиков марксизма явно метафизические положения вроде следующих: "Гена не зародыш признака и не единственная ответственная материальная частица клетки, определяющая образование признаков или развертывающаяся в признак. Признак — это результат развития всей клетки, взаимодействия клеток и, наконец, результат взаимодействия с внешней средой (чего же в конце концов? — С. П.). Гена определяет специфическое развитие признака, определяет направление, в котором должен развиваться признак". Как видим, тогда во взглядах некоторых формальных генетиков имелись оговорки.

По-другому оценивали значение опытов Менделя мичуринцы. Профессор К. Ю. Кострюкова из Киевского медицинского института отметила: “Процитирую лишь то, что писал в 1939 г. в № 10 журнала "Под знаменем марксизма" наш философ Митин, подводя итоги селекционно-генетической дискуссии, организованной редакцией этого журнала: "Мендель, несомненно, вскрыл некоторые закономерности в наследовании ряда определенных признаков: явление расщепления в гибридном потомстве, известную математическую правильность в этом расщеплении, относительную независимость наследования некоторых признаков. Открытые Менделем явления в области наследственности были затем связаны с процессами, происходящими в клетках организма, в частности в половых клетках. В оценке всех этих менделевских правильностей, которые бесспорны как частные правила, мы хотим стоять и стоим на точке зрения Тимирязева и Мичурина”.

Доцент С. И. Алиханян (кафедра генетики Московского государственного университета) так описывал участникам сессии ВАСХНИЛ свое представление о связи гена и признака: "Ген — не зародыш признака и не единственно ответственная материальная частица клетки, определяющая образование признака или развертывающаяся в признак. Признак — это результат деятельности клетки, взаимодействия клеток и решающего влияния окружающей среды. Ген лишь определяет направление, в котором должен развиваться признак, в определенных условиях среды".

Академик А. А. Авакян критиковал на Августовской сессии ВАСХНИЛ Шмальгаузена, который писал: "Эти представления (т. е. представления Вейсмана. — А. А.) имели в свое время большое прогрессивное значение". "Представление об организме, как о мозаике самостоятельных признаков и свойств, определяемых независимыми друг от друга наследственными единицами, оказалось также в высшей степени плодотворной рабочей гипотезой…" (С. 199).

6.2. А ЧТО СЕЙЧАС?

Последующее развитие науки со всей очевидностью показало, что такой связки нет и быть не может. Современные генетики понимают несостоятельность классической генетики. Так, пытаясь решить парадокс Т. Мальцева и найти выход из тупика, в который завела классическую генетику идея ген-признак, Дубинин (38) указывает: “…гены — это не зачатки признаков…Принцип действия кода гласит — каждый признак определяется всеми генами, каждый ген в конечном итоге определяет все признаки организма”. Ученые уже давно осознали, что Лысенко был прав. Первыми поняли этот факт на Западе, но никто не хочет сказать, что король был голый, что формальная генетика оказалась не верной, а Лысенко прав.

Главной ошибкой формальной генетики является постулат о том, что за каждый признак отвечает соответствующий ген или группа генов. За другой признак — другой ген или группа генов, но без участия тех, которые кодируют первый признак. Я обозначил эту проблему как проблему признак-ген. Гена прямого носа, морщинистости, длинного хвоста, не существует ген мочки уха.

Имеется несколько доказательств того, что ген и признак практически никак напрямую не связаны. Сейчас установлено, что у человека всего-навсего чуть более 21000 генов, а число разного рода признаков зашкаливает за миллиард. Даже если иногда один ген может давать 40000 белков (но это редчайшее исключение, так как альтернативный сплайсинг такого рода чрезвычайно редок), то все равно белков не хватит для описания всего многообразия признаков человека.

Развитие современной молекулярной биологии открыло невероятную пропасть между генетической информацией и ее биологическим значением. Эту щель не могут закрыть до сих пор. Как проговариваются генетики Ратнер и Васильева (122), на момент 1999 г. ни один из полигенов не был идентифицирован и не клонирован, то есть, не определена последовательность его нуклеотидов. А Келлер открыто пишет — "нет простой связи между генами и белками" (248. С. 64).

Как мы выяснили выше, ген — это нечеткая и носящая вероятностный характер информация, находящаяся в пределах клетки и кодирующая определенный белок. Гены никакого прямого отношения к фенотипическим признакам организма не имеют. Но ведь есть так называемые моногенные заболевания человека. Как быть с ними?

Да, моногенные заболевания человека — это заболевания, где патология только одного белка (что встречается достаточно редко) вызывает заболевание с четкими фенотипическими признаками. Но во-первых, во времена Моргана такие заболевания не были известны, кроме, может быть, гемофилии (182). А во-вторых, это просто не так. Наследственные болезни не всегда имеют генетические локусы, связанные с ними, то есть, другими словами, мутации множества генов могут вести к одному и тому же болезненному фенотипу. Гены, мутации в которых ответственны за развитие генетических заболеваний до сих пор не идентифицированы для многих заболеваний, генетическая природа которых уже доказана. Мутации в белках, которые в клетке взаимодействуют друг с другом, часто ведут к одному и тому же заболеванию или фенотипу. Взаимодействующие белки часто ведут к сходному фенотипу, когда один или другой подвергаются мутациям (288). Например, в настоящее время обнаружено более 1500 мутаций в молекуле СФТР (белок, мутации в котором вызывают муковисцидоз, см. ниже), которые вызывают муковисцидоз. Это говорит, что для СФТР почти каждая аминокислота является критической. Но проявления болезни совершенно разные (240). В данной области также четкие параллели, как один ген — одно заболевание остаются очень редкими (248. С. 68). Это я докажу ниже на примере муковисцифдоза.

6.3. НЕСООТВЕТСТВИЕ ГЕНОВ И ПРИЗНАКОВ