Почему Сталин защищал Лысенко — страница 57 из 112

После окончания синтеза длинной полисахаридной цепи, вакуоль с СФТР идет к органелле, располагающейся после аппарата Гольджи. Здесь она находится долгое время, пока клетке не потребуется начать откачивать ионы хлора из цитоплазмы. Обычно такая необходимость появляется тогда, когда из-вне поступает циклический моноаденофосфат (циклоАМФ). После этого резко увеличивается способность вакуолей, содержащих СФТР сливаться с верхушечной плазматической мембраной. После сливания СФТР оказывается на верхушечной мембране и выполняет свою главную функцию.

Ионы хлора транспортируются через мембрану без использования химической энергии макроэргов, то есть веществ типа АТФ или ГТФ, где химическая энергия запасена специально для использования внутри клетки для выполнения разного рода работ. Откачка ионов хлора из цитоплазмы ведет к тому, что кислотность в ней уменьшается, а в просвете или во внеклеточной среде увеличивается. Ионы хлора по законам осмоса увлекают за собой воду. При этом белковый секрет или слизь в просвете разжижаются.

Если белка нет на апикальной плазматической мембране, то ионы хлора не увлекают воду и секрет не разжижается. Его заселяют микробы и после безуспешной борьбы с ними человек обычно умирает в возрасте до 30 лет.

В настоящее время идентифицировано около 1000 мутаций гена СФТР. Большинство из них не ведет к развитию болезни. Главной мутацией, вызывающей заболевание является исчезновение из аминокислотной цепочки аминокислоты фенилаланина на 508-й позиции. В результате нарушается образование трехмерной структуры белка и он не может покинуть пределы ЭС. Данная мутация вызывает заболевание в 66 % случаев.

Главной мутацией, которая нарушает доставку СФТР на верхушечную плазматическую мембрану является удаление трех нуклеотидов, ответственных за кодирования аминокислоты фенилаланина на позиции 508. Если фенилаланина нет, то нарушается взаимодействие с коатомером 2 и СФТР не покидает эндоплазматическую сеть. После некоторого периода пребывания там он подвергается расщеплению на аминокислоты.

Следствием мутации гена является нарушение структуры и функции белка, получившего название трансмембранный регулятор муковисцидоза. Следствием же повреждения функции белка является сгущение секретов желез внешней секреции, затруднение эвакуации секрета и изменение его физико-химических свойств, что, в свою очередь, и обуславливает клиническую картину заболевания. Изменения в поджелудочной железе, органах дыхания, желудочно-кишечном тракте регистрируются уже во внутриутробном периоде и с возрастом пациента неуклонно нарастают. Выделение вязкого секрета экзокринными железами приводит к затруднению оттока и застою с последующим расширением выводных протоков желез, атрофией железистой ткани и развитием прогрессирующего фиброза. Активность ферментов кишечника и поджелудочной железы значительно снижена. Наряду с формированием склероза в органах имеет место нарушение функций фибробластов. Установлено, что фибробласты больных муковисцидозом продуцируют цилиарный фактор, или М-фактор, который обладает антицилиарной активностью — он нарушает работу ресничек эпителия.

Оказывается, как и в случае в серповидно-клеточной анемией, мутация в СФТР может быть доминантной, если рассматривать в качестве признака заболеваемость холерой, при которой образуется много цикло АМФ и больные погибают от потери жидкости из кишечника. Без функции данного белка холера протекает гораздо легче.

В истории с СФТР много остается неясным. И, тем не менее, никаких данных, доказывающих, что муковисцидоз расщепляется по типу Менделевского распределения 3 к 1 я не нашел. Данный белок специфически взаимодействует с 400 различными белками и значит, теоретически мутации всех из этих белков могут вызвать при определенных условиях способны вызвать заболевание сходное с муковисцидозом или сам муковисцидоз. При муковисцидозе могут поражаться практически все органы, где имеются клетки, секретирующие слизь или другие жидкие секреты. И это при всем то, что поражается один и тот же ген СФТР. Однако без гена СФТР (после его искусственного удаления) нет особых поражений у мышей и крыс. У мышей удаление СФТР не дает никакого эффекта. Поэтому и в этом случае говорить о прямой связи ген-признак не приходится.

Итак, СФТР — рецессивное заболевание, но с неполным доминированием нормального гена. Однако и в этом примере видно, что никакой прямой связи между информацией, записанной в гене, и фенотипом нет — эта связь очень сложная и опосредованная.

Казалось бы, при муковисцидозе повреждается один ген, но для реализации эффекта данной мутации, для реализации повреждения на уровне фенотипа задействованы сотни других генов.

Таким образом, современные исследователи доказали, что даже в случае Менделевских экспериментов нет прямой связи между геном и признаком. Точно также при таких сверхпростых по типу наследования фенотипах, как наследование групп крови, или наследование муковосцидоза не обнаружено прямой связи между информацией, записанной в последовательности нуклеиновых кислот, и фенотипическими признаками организма. Связь эта очень опосредованная и в ее реализации принимают участие сотни, а то и тысячи белков (то есть, упрощенно — генов).

Итак, хотя догма в формальной генетике утверждает, что ген реализуется в признаке, на самом деле это не так. Практически нет прямой связи признака и гена (кроме, может быть, бактерий, которые секретирует фермент). Идея о том, что имеется прямая связь ген-продукт наконец-то отвергнута и современными западными исследователями (295).

Всего в организме человека найдено 21000 генов (29). С открытием альтернативного сплайсинга стало ясно, что число генов больше, чем число сегментов ДНК, кодирующих пре-мРНК. Сейчас насчитывается 500000 генов и их изоформ, тогда как участков ДНК, кодирующих незрелые матриксные РНК насчитывается около 21000 (307). Подсчеты показывают, что вместе с изоформами в реальности данное число можно увеличить максимум, в 4 раза. Между тем признаков у человека миллионы и миллионы. Подавляющее большинство их кодируется несколькими генами. С одной стороны, белок может выполнять две и более функции. С другой стороны, многие признаки кодируются десятками и сотнями генов. Наконец, большинство генов практически одинаково у всех (!!!) живых организмов. Например, сравнение геномов мыши, человека, собаки и других позвоночных показало, что существенная фракция их практически одинакова (консервативна). Только около 5 % подвержена отрицательному отбору с тех пор как виды разошлись (261, 337). Гены, которые имеются у разных видов, но которые похожи друг на друга из-за того, что эти гены произошли от общего предка, называют ортологичными генами.

Нет никакого гена "безмитохондриальности", что мы видим у микроспоридий, внутриклеточного паразита, где митохондрий нет вообще. Есть ген, который вызывает у гороха морщинистость горошин, но он не вызывает морщинистости у риса, на самом деле, никаких единичных генов, кодирующих наследуемые напрямую сложные фенотипические признаки на уровне целостного организма и доступных для генетического изучения во времена Моргана тоже нет и не было. Нет признаков, определяемым одним геном. Может быть мутация одного, а чаще нескольких генов, ведущая к появлению признака рецессивного. Закон о неделимых частичках наследования тоже оказался неверен. Они делимы — белки могут иметь разные изоформы….

Но только лишь в нескольких случаях природе удалось добиться получения прямой связи между строением гена и получающимся признаком (Мендель, Де Фриз…). Любая наследственная информация реализуется через целый геном. Потеря признака часто есть вредоносная мутация гена, но не наоборот. Сам по себе ген без других генов ничего не значит. Пересадка так называемого гена морщинистости гороха в геном риса не приводит к появлению морщинистости у рисовых зерен.

ГЛАВА 7. ПРИОБРЕТЕННЫЕ ПРИЗНАКИ МОГУТ НАСЛЕДОВАТЬСЯ!

"…необходимо иметь смелость видеть вещи такими, какие они есть".

(О. Шпенглер)

В данной главе я рассмотрю вопрос, насколько стабильна информация, записанная в последовательности нуклеотидов, будут описаны механизмы изменений в молекуле ДНК, дана их классификация и доказано, что в процессе эволюции организмы научились бороться с нестабильностью генома, используя несколько способов, в частности увеличивая "буферность" и избыточность генома. Кроме того я проанализирую вопрос, могут ли наследоваться приобретенные признаки, как это считал Лысенко, или приобретенные признаки по наследству не передаются, как это считали формальные генетики.

7.1. ПОШЛЫЕ ШУТНИКИ

На сайте Лысенкоизм (86) я узнал о том, что уже “много лет в интеллигентствующих кругах ходит "забавная история", смысл которой таков: выступает Лысенко на неком ответственном собрании, рассказывает о наследовании приобретенных признаков; и все бы было у него как по маслу, но тут хитроумный Академик (Капица, вариант — Ландау, эксклюзивный вариант — Блохин…) задает ему коварно-торжествующий вопрос: "А как же быть с дефлорацией девственной плевы (вариант — обрезанием крайней плоти у евреев)?" После чего поставленный в тупик Лысенко вынужден отступить с позором”.

Данный пошлый анекдот имеет несколько вариантов.

1. Дау и девственницы… ("анекдот" из ФИДО)

"Как то Ландау, сидя на докладе небезызвестного академика Лысенко, и прослушав весь этот бред по поводу наследственных признаков, прививаемых обучением, спросил: Ла: Вы, товарищ академик, утверждаете, что если у коровы отрезать ухо, и у ее потомков отрезать ухо и т. д. и т. д. то произойдет рождение одноухой коровы? Правильно ли я Вас понял?

Лы: Правильно, товарищ Ландау.

Ла: Тогда как вы объясняете рождение девственниц?"

2. Занимательный факт о Петре Капице (59):

"Академик Петр Капица задал академику Лысенко, разгромившему отечественную генетику, коварный вопрос: ‘Вы утверждаете, что гена наследственности не существует и все зависит от внешнего воздействия, которое и закрепляется как наследственный признак. Почему тогда, несмотря на тысячелетние воздействия, женщины родятся девственницами, а евреи необрезанными?’"