Большинство же растений такими устройствами не обладает.
Сейчас доказано, что если в какой-то клетке растения обнаруживается избыток какого-либо белка, то информация об этом быстро становится доступной для других клеток (они, ведь образуют синцитий, будучи связаны межклеточными мостиками, по которым информация и передается) и они снижают синтез данного белка. Это было установлено с использованием метода пересадки генов от одного растения к другому (247, 254).
Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически или даже генетически идентичными. Геномы их клеток могут разойтись в результате соматических мутаций, соматических рекомбинаций (результаты относительно общего митотического кроссинговера) или в результате наследственных (но часто обратимых) изменений (в основном — метиляций) генома (289). С точки зрения общей биологии более важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения.
Оказалось, что индивидуальные органы и ткани растения не обязаны быть фенотипически (то есть отличиями внешних признаков) или даже генетически (на основе записанной наследственной информации) идентичными (289).
Эксперименты с трансгенными (которым пересажены чужие ДНК) растениями показывают, что регуляция генной экспрессии взаимосвязана со всеми частями растения. Так, перепроизводство трансгенного продукта в одной части растения часто влечет инактивацию гена во всех тканях трансгенного растения. Если генетические системы привоя и подвоя совсем несовместимы, то привой гибнет или же гибнут оба, так как генетическая информация от привоя отравляет клетки хозяина (247, 254). В последние годы несколько независимых групп исследователей доказали, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться (234–236).
8.7. ТРАНСПОРТ РНК МЕЖДУ КЛЕТКАМИ РАСТЕНИЙ ПО ПЛАЗМОДЕСМАТАМ
Имеются филогенетические доказательства того факта, что прямой контакт между клетками растения паразита и растения хозяина способствует передаче наследственной информации между ними (197, 198, 281).
Существует также механизм горизонтального переноса генетической информации от левкоя (подвоя) к побегу и наоборот — от привоя к подвою. Недавно эксперименты с привоями подтвердили, что эндогенная (от хозяина) матричная РНК входит и передвигается по системам перемещения растворов в привоях (265).
Установлено, что генетическая информация из одной клетки растения передается в другие. Переносу наследственной информации между привоем и подвоем, а также между растением хозяином и растением паразитом способствуют бактерии, живущей в тканях растения (329).
Недавние эксперименты с привоями показали, что эндогенная (от хозяина, подвоя) информационная РНК (переносчик информации от ДНК к месту синтеза белка) перемещается по трубочкам, соединяющим клетки между собой, к клеткам привоя (265). Перезапись информации с РНК на ДНК хозяина происходит с помощью особых ретровирусов и белковых частиц-ретротранспосом, тем самым информация оказывается интегрированной в геном привоя (258). Если говорить по-научному, то она входит и передвигается от одной клетки к другой по цитоплазматическим мостикам, соединяющим все растительные клетки в данном организме, в том числе клетки привоя и подвоя.
Следовательно, должно быть формирование плазмодесмат между клетками хозяина и привоя. А раз плазмодесмы формируются, то перенос генетической информации становится реальностью. Если информационная РНК может передвигаться между клетками хозяина и по привою, раскрывает механизм, за счет которого эта наследственная информация может потом включаться в ДНК привоя.
Синтезированная в одной клетке матричная РНК может двигаться в пределах всего синцития растений (193). В последние годы несколько независимых групп исследователей доказали, подтвердив результаты Лысенко и Алексеевой, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться (209, 234–236, 325).
После открытия того факта, что информационная РНК может передвигаться между клетками хозяина и по привою раскрывают механизм за счет которого эта наследственная информация может потом включаться в ДНК привоя с помощью ретровирусов и ретротранспосом и поэтому оказывается интегрирована в геном привоя (258).
Вирионы могут двигаться от одной растительной клетки к другой по плазмодесматам. Растения имеют специализированный механизм для транспорта матричной РНК по плазмодесматам (287). Например, при первичном инфицировании растений вирусы табачной мозаики проникают внутрь цитоплазмы через разрывы в клеточной стенке. После образования новых вирусных частичек, последние поступают в другие клетки через плазмодесматы. У этих вирусов есть специальный белок, который расширяет плазмодесмата.
Переносу наследственной информации между привоем и подвоем, а также между растением хозяином и растением паразитом способствуют бактерии, живущей в тканях растения (329).
8.8. МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПЕРЕЗАПИСИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ
Приклеивание к ДНК комплементарной РНК может блокировать транскрипцию, то синтез РНК на основе ДНК. Поэтому клетка ограничивает возможность для такой гибридизации. ДНК бывает почти всегда скручена. Однако это возможно в момент удвоения ДНК, если в этот момент в ядре оказывается молекула РНК, комплементарная расплетенному участку ДНК. Возможно повреждение или удаление генов при кроссинговере.
Гены и другие фрагменты ДНК могут попадать в цитоплазму и встраиваться в ДНК области теломеров — хвостов хромосом (176). ДНК может попадать внутрь растительной клетки с помощью бактерий или при разрушении, а затем восстановлении строения клеточной стенки в области каллюса.
Возможны следующие механизмы переноса генетического материала из клетки подвоя в клетки привоя и наоборот. 1. использование передачи наследственной информации посредством двойных спиралей РНК, матричной РНК и далее перенос наследственной информации с молекулы РНК на ДНК с помощью ретровирусов. 2. Прорастание тяжа клеток с получением химеры из двух типов клеток. При этом прорастание тяжей клеток в плоды с образованием химер. Но в этом случае все равно требуется слияние клеток разных видов. А виды это нескрещиваемые популяции. Кроме того ростом клеточных тяжей из места срастания привоя и подвоя нельзя объяснить передачу признаков через поколения. Поэтому проще объяснить через малые двойные РНК и мРНК.
Вирусы растений отличаются от вирусов других живых существ тем, что их геном, как правило, не встраивается в геном растений, поскольку их наследственный аппарат представлен, главным образом, РНК. Те же немногочисленные вирусы, которые имеют геном, состоящий из ДНК, могут встраиваться (176).
Чтобы понять, как вирусы могут переносить наследственную информацию несколько слов о вирусах и жизненном цикле вирусов, содержащих РНК. РНК вирусы могут иметь двойную цепь РНК или одиночную цепь РНК. Попадая в клетку хозяина, РНК вирусы могут сразу использовать РНК-зависимые полимеразы для синтеза мРНК, только на которой могут синтезироваться белки вируса. Обычно, попадая в клетку хозяина, геном вируса подавляет геном хозяйкина и заставляет того работать только с РНК или ДНК вируса.
Если одиночная цепь РНК соответствует мРНК, то сначала на ней синтезируется комплементарная цепь, а потом на основе данной цепи идет синтез мРНК и все так же, как описано выше. Если же цепь РНК вируса не соответствует мРНК, то есть, комплементарна ей, то на ней сразу синтезируется мРНК.
Наконец, имеются ретровирусы. Они имеют одиночную цепь РНК, но на ней в них сначала синтезируется комплементарная ей цепь ДНК, затем на основе этой цепи идет сборка полной двойной цепи ДНК и только потом обычными механизмами, как и у хозяина, идет синтез мРНК вируса для синтеза вирусных белков.
ДНК, синтезированная на основе РНК ретровируса внедряется в ДНК хозяина в виде провируса. Затем синтезируется комплементарная РНК, которая может использоваться или как мРНК для синтеза белков ретровируса или как носитель информации для упаковки в вирусную частичку. Данный фермент упаковывается в вирусную частицу.
Точно также давно известно, что плотный контакт между клетками паразитического растения и клетками хозяина способствует перемещению генетического материала (197, 281).
8.9. ГЕТЕРОКАРИОНЫ
Гибрид — это когда происходит слияние разных клеток с образованием единого ядра. После Лысенко соматическая гибридизация или спонтанного явление слияния неполовых (соматических) клеток in vitro (вне организма или точнее в культуре ткани) в 1960 году была, видимо, переоткрыта Жоржем Барским (163) во Франции. Приведу небольшую цитату. "В 1960 г… биолог Дж. Барский, культивируя в одном сосуде сразу две различные линии клеток, обнаружил, что у некоторых клеток хромосом было больше, чем полагалось. Барский предположил, что это было результатом случайного объединения клеток. Сначала сообщение о слиянии соматических (то есть не половых) клеток было встречено с недоверием, но последующие работы подтвердили факт спонтанной гибридизации клеток. Правда, гибридные клетки возникали очень редко, один раз на десять — сто тысяч случаев. Поэтому надо было как-то подстегнуть процесс слияния… Задачу решили с помощью вируса Сендай, который после встраивания в оболочки клеток примерно в сто раз увеличивает возможность слияния клеток, изменяя их наружную оболочку” (71).
Есть и другой способ добиться той же цели. “Клетки обрабатывают синтетическими полимерами, например полиэтиленгликолем, которые тоже меняют свойства липидов клеточной мембраны и облегчают слияние. Соматические гибриды клеток растений, полученные по методике Барского, можно выращивать в виде культуры тканей, и получать целое растение "на грядке" (71).
Если клетки разных тканей слить, то образуется гетерокарион, имеющий два ядра. Полученная клетка как правило не делится, но может долгое время жить в покое. Недавно показано, что клетки разных тканей (стволовые клетки и нейроны), происходящих из разных видов животных (человек и мышь), могут сливаться, образовывать одну общую клетку гетерокарион и существовать, хотя, видимо, делиться они не могут (249).