Этот феномен развит в ещё большей степени у растений. Из гетерокарионов, образованных после слияния протопластов разных видов растений, может развиваться целое растение — соматический гибрид этих двух видов, но только в том случае, если удается решить проблему несоответствия числа хромосом или же, если происходит полиплоидизация с последующим перераспределением генов с использованием мобильных генетических элементов. В большинстве случаев, однако, созданию генетически стабильного гибрида препятствует некие факторы, связанные с несовместимостью кариотипов. Только в последнее время стало понятным, что это за факторы (220, 221).
8.10. КРИТИКА ЭКСПРИМЕНТОВ НЕМЕЦКИХ УЧЕНЫХ
Замечательным примером замалчивания значения наследия Лысенко и остракизма выдающегося советского ученого является недавняя статья немецких исследователей (319), опубликованная в журнале Наука (Science) и посвященная вегетативной гибридизации. В своих экспериментах эти авторы, по сути, доказали, что наследственная информация передается от привоя к подвою и наоборот, подтвердив тем самым идеи Лысенко о вегетативной гибридизации. Вместо того, чтобы честно сказать, что академик Лысенко оказался прав, они говорят о непонимании, сложности и т. д. Более того, вопреки логике и исторической правде они утверждают, что никакого отношения их результаты к концепции Лысенко не имеют.
В конце авторы произносят сакраментальную фразу, что их данные не подтвердили результаты Лысенко, хотя на самом деле они именно их подтвердили. Видимо, без таких слов их бы не опубликовали в одном из двух ведущих научных журналах мира.
Это как клеймо. Написал, что Лысенко — гад, значит, свой человек, не написал — чужак. Но видимо, без этой фразы их бы не опубликовали в Науке.
В настоящее время в приличном биологическом сообществе дискуссия по основаниям генетики просто негласно запрещена. Само сомнение и критические суждения по этому поводу рассматриваются как потеря профессионализма (если не что-нибудь похуже). Присяга фундаментальным догмам (догме генетики — в нашем случае) словно присяга на лояльность.
Между тем в другой статье один из авторов статьи (да и другие авторы) цитируя свою же работу, прямо пишет, что имеются экспериментальные доказательства того, что генетический материал может перемешаться между клетками подвоя и привоя, при вегетативной гибридизации, если клетки контактируют друг с другом. Так в своей обзорной статье сам Бок (176) пишет, что экспериментальные результаты доказывают, что генетический материал может передвигаться между растительными клетками, когда они контактируют друг с другом [“experimental evidence (319) suggests that genetic material travels between plant cells when they contact each other in grafts”].
Внимательное изучение работы показывает, что выводы немецких исследователей далеко не безупречны. Во введении авторы статьи ссылаются на работу 1954 года (180) как на доказательство того, что между подвоем и привоем не было обмена генетическим материалом [К сожалению, я не нашел этой работы в Интернете и ПубМеде, зато нашел другую (179)]. Самое интересное что в 1954 г. еще не было адекватных методов, позволяющих изучать межклеточный транспорт генетического материала. Не было известно ни о матричных РНК, ни о транспортных РНК… Цитирование столь старой работы в качестве доказательства того, что при вегетативной гибридизации нет переноса генетического материала, свидетельствует о том, что эта тема была табу для исследователей и после смерти Сталина и эта область генетики практически не изучалась и не развивалась. Видимо, на публикацию таких работ был наложен своеобразный запрет.
Немцы исследовали возможность переноса только двух генов из более чем 30000 генов имеющихся у растений. При отслеживании вегетативной гибридизации они использовали зеленый флюоресцентный белок, которые является генетически чужеродным для растений и ими отторгается (271). При пересадке таких генов растений пересаженные гены быстро блокируются наследственным аппаратом растений (347), видимо, потому, что они распознаются как чужие через механизм образования двойной спирали РНК.
Далее. В своем исследовании немецкие ученые использовали полностью стерильные растения, поэтому использование ретровирусов, которые могут переносить информацию с матричной РНК на ДНК было исключено. Между тем наличие бактерий в тканях способствует перемещению генетического материала между контактирующими клетками разных видов растений (329). Опыты Мичурина и других советских исследователей проводились не на стерильных объектах.
В своих экспериментах Стегеман и Бок (319) использовали табак, а не помидор, который более чувствителен к вегетативной гибридизации (30). Кроме того, они исследовали материал уже через 9-14 дней после прививки. То есть практически немедленно после формирования, а затем и канализации каллюса [Каллюс это недифференцированная ткань растений. Она образуется у пасленовых в месте подсадки привоя к подвою. Затем каллюс дифференцируется и из него начинаю образовываться ростки, стебли и т. д. (30)].
Эти несколько дней в течение которых растения наблюдались, достаточны только для созревания каллюса, но не для прорастания клеточных тяжей и для переноса достаточного количества РНК, чтобы изменить ДНК. Между тем эксперименты с вегетативной гибридизацией у мичуринцев тянулись годами. А это, видимо, было достаточно для проникновения большого количества РНК через плазмодесматы на значительные расстояния. Полиплоидией всё это объяснить нельзя. Кроме того не следует забывать, что клетки растений не могут активно двигаться.
Странно выглядит и статья о вегетативной гибридизации в русскоязычной свободной энциклопедии Википедии. Видимо, под давлением генетиков и антисоветчиков из статьи убраны все доказательства правоты Лысенко. Даже вышеуказанная работа немецких ученых о вегетативной гибридизации (319), которая, несмотря на заявления авторов, подтверждает идеи Лысенко, трактуется с позиций, ущербных для российской науки.
8.11. УПРОЩЕННАЯ МОДЕЛЬ ПЕРЕДАЧИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В РАСТЕНИЯХ
Экспериментальные наблюдения, свидетельствующие о переносе генетической информации от хозяина к привою, однозначно указывают на то, что при вегетативной гибридизации существует механизм горизонтального переноса наследственной информации от левкоя (подвоя) к побегу (привою) и наоборот.
Как же реализуется механизм переноса генетической информации от подвоя (растения-хозяина) к привою (пересаженному черенку)? Для объяснения молекулярных механизмов и для того, чтобы лучше понять строение растительных клеток и организацию работы их аппарата наследования я предлагаю следующую сильно упрощенную схему. Представьте себе несколько закрытых бачков, сделанных из теста и заполненных субстанцией, которая похожа на раствор яичного белка, и соединенных между собой тонкими трубочками. Стенка баков есть аналог клеточной мембраны или плазматической мембраны, по-научному. Раствор в баках содержит не только белки, типа раствора яичного белка, но и сахара, ионы, небольшие растворимые молекулы РНК, аминокислоты и некоторые другие вещества. Баки герметически закрыты. Если в один из баков впрыснуть краску, то она быстро диффундирует в другие баки. Баки — это клетки, а трубочки — это плазмодесмы. Внутри баков проложены миниатюрные железные дороги, которые могут перевозить небольшие грузы. В каждом баке имеется небольшая машинка для копирования информации с большого твердого диска-винчестера на бумажные перфоленты. Эти перфоленты могут прицепляться к паровозикам, курсирующим по миниатюрным железным дорогам. Информационная или матричная РНК (в нашем случае — бумажные компьютерные перфоленты) может транспортироваться клеткой с помощью микротрубочек и специальных микротрубочковых моторов, которые используют энергию АТФ или других богатых энергией молекул для целенаправленного и активного перемещения по микротрубочкам в определенные места клетки.
Итак, наша копировальная машина открывает винчестер, то есть ДНК и копирует на нем перфоленту, то есть информационную РНК. Эта перфолента прицепляется к паровозикам, то есть микротрубочковым белкам-моторам и паровозики тащат перфоленты по колеям к пересадочным станциям в виде плазмодесм-трубочек.
Около межклеточных трубочек-плазмодесм перфоленты сгружаются и вручную переносятся через трубочку с следующий бак, где они снова грузятся на паровозики и их везут к главной копировальной машине данного бака. Здесь включается считывание и генетическая информация считывается с диска и записывается на винчестер данного бака, то есть на ДНК хромосом. Эта информация из соматических клеток потом может быть захвачена вновь формирующимися половыми клетками и она, конечно, будет расщеплена. Так идет передвижение информационной РНК, а затем обратная трансляция информации на ДНК привоя и в меньшей степени на ДНК хозяина. Вот и вся суть открытий Мичурина и Лысенко, объясненная на пальцах с точки зрения современной молекулярной и клеточной биологии.
Итак, механизм передачи наследственных свойств от подвоя к привою лежит в рамках современной генетической догмы. Белки и РНК могут легко проходить через плазмодесмы, переходя от подвоя к привою. Таким образом, наследственная информация переносится от РНК подвоя к ДНК привоя или, наоборот, от РНК привоя к ДНК подвоя. Транспортируемые молекулы, синтезируемые в других частях организма, воздействуют на онтогенез и физиологию (и тем самым на фенотип) конкретной ткани, а не всего растения. Поэтому при нормальных условиях различия между частями растения очень трудно наблюдать. Эта информация потом может быть захвачена и вновь формирующимися половыми клетками и она, конечно, будет расщеплена при половом размножении и надо добиваться получения гомозиготных растений.
Итак, современная молекулярная биология легко объясняет результаты вегетативной гибридизации, которые долгое время оставались водоразделом для признания некоторых научных результатов Лысенко. Если использовать научный язык, то Мичурин и Лысенко впервые применили на практике направленный мутагенез с помощью исследования информационной РНК растения-хозяина для изменения наследственности в геноме растения привоя, гостя.