Под знаком необратимости (Очерки о теплоте) — страница 1 из 26

Смирнов ГерманПОД ЗНАКОМ НЕОБРАТИМОСТИ(Очерки о теплоте)

Моим однокурсникам и преподавателям Ленинградского кораблестроительного института посвящаю.

ИНФРАКРАСНОЕ ЛИЦО МИРА

Каждое утро восходящее солнце набрасывает яркую маску на окружающий мир. Из ночного «оптического небытия» выступают красные, желтые, серые стены домов, черный асфальт мостовых, зелень деревьев, голубое небо, белые облака. И эта игра красок надежнее, чем ночная тьма, скрывает от нас второе, истинное лицо мира. Истинное, ибо здесь каждый предмет светит не отраженным солнечным, а своим собственным, хотя и невидимым глазу инфракрасным светом. Только тела, охлажденные до абсолютного нуля, до —273,16 °C, не испускают инфракрасных, или, как их еще называют, тепловых лучей.

Если бы человек мог видеть эти лучи, он без особых трудов смог бы выполнить такое головоломное задание: поймать черную кошку, сидящую на черном бархате в абсолютно темной комнате. Ведь комната абсолютно темная для нас человеку с инфракрасным зрением представляется буквально залитой светом. Здесь светится все — стены, пол, потолок, мебель. И на этом ровном светящемся фоне ярким пятном выделяется черная кошка, которая на 10–15° теплее окружающих ее предметов.

Если бы, выполнив это странное задание, инфравидец стал осматривать комнату, он обнаружил бы немало интересного. Прежде всего ему в глаза бросились бы ярко сияющие трубы и радиаторы отопления, окруженные дрожащими поднимающимися к потолку светлыми струями нагретого воздуха. Он увидел бы такие же светлые струи и над включенным радиоприемником. Присмотревшись пристальнее, он заметил бы легкое свечение трансформатора, понижающего напряжение, и проводов, по которым течет электрический ток. Одного взгляда ему было бы достаточно, чтобы увидеть: стены, выходящие на улицу, холоднее внутренних стен здания. А щели, через которые холодный воздух врывается в комнату, обнаруживают себя темными линиями на фоне светлых стен.

На улице его ожидали бы не менее удивительные вещи. Зимой наш необычный наблюдатель увидел бы, что над каждым зданием поднимается в небо светлый клубящийся столб нагретого воздуха. Он сразу увидел бы, в каких местах на стенах здания мало изоляции, а где ее чересчур много. Ему не пришлось бы гадать, куда расходуется мощность автомобильного двигателя: светящиеся слабым сиянием шины, тормозные колодки, трансмиссии и нагретые струи воздуха, срывающиеся с обшивки, подскажут ему основные статьи расхода.

Инфравидец всюду обнаружит разности температур, сопровождающие движение людей, животных, транспорта, воды, горных пород, рабочих инструментов, света, электричества. Он видел бы, что нагреваются при ходьбе подметки башмаков, что нагреваются оптические системы, фокусирующие свет, что нагреваются провода, по которым течет ток. Он обнаружил бы, что всякая жизнедеятельность обязательно сопровождается выделением теплоты. Короче говоря, человек, способный видеть тепловые лучи, оказался бы настоящей находкой для человечества. Но, увы, сам человеческий глаз — тоже нагретое тело, и поэтому он тоже излучает инфракрасные лучи. Мощность излучения глазной полости, падающего на сетчатку, столь велика, что будь эти лучи видимыми — сияние собственной ткани глаза затмило бы даже свет солнца!

Природа не случайно лишила нас инфракрасного видения: чтобы различать что-нибудь вокруг, наши глаза в принципе должны быть слепы к инфракрасным лучам. И все-таки ученые ухитрились обойти этот, казалось бы, категорический запрет и создать приборы, позволяющие увидеть невидимое.

Исследователю, вооруженному прибором для инфракрасного видения, черная бумага, картон, эбонит представляются прозрачными, как стекло. Он более «дальнозорок», чем обычный наблюдатель, ибо атмосфера прозрачнее для тепловых лучей, чем для световых: более длинным инфракрасным волнам мелкие пылинки и капельки тумана не помеха. Проходя сквозь атмосферу, инфракрасные лучи, несущие информацию о тепловых процессах на отдаленных небесных телах, ослабляются меньше, чем световые. Исследуя инфракрасные лучи, испускаемые Луной, можно измерить скорость охлаждения ее поверхности, когда она заходит в тень Земли. А по скорости охлаждения можно судить о структуре пород, из которых состоит лунная поверхность.

Современные инфракрасные приборы настолько чувствительны, что если глядеть через них с самолета на Землю, то на ее поверхности можно обнаружить участки, температура которых всего на 2–3° отличается от температуры окружающей среды. С помощью именно таких приборов удалось обнаружить, что лесные массивы регулируют свою температуру: днем, когда светит солнце, они холоднее окружающей среды, ночью — теплее ее. По тепловым картам земной поверхности воочию можно убедиться: зимой в большом городе на 2–3° теплее, чем за городом.

Тепловое излучение с поверхности Земли в какой-то степени отражает подземную структуру нашей планеты, поэтому геологи приспосабливают инфракрасную аэрофотосъемку для поисков нефти и полезных ископаемых. Инженеры-строители применяют ее для определения толщины горных пород при выборе мест строительства, а также для обнаружения мест течи в подземных трубопроводах. Археологи с помощью аэрофотосъемки ищут древние исчезнувшие с лица земли города, которые, однако, оставили под внешним покровом земли следы, иначе излучающие инфракрасные лучи, чем окружающий эти города грунт. Гидрологам инфракрасная аэрофотосъемка помогает находить подпочвенные воды, оценивать содержание воды в почве, наносить на карты русла ручьев и рек в тех случаях, когда они скрыты буйной растительностью.

В начале 1960-х годов с помощью тепловидения стали распознавать симптомы опасных заболеваний раньше, чем другими методами. Так, темные пятна над надбровными дугами, означающие, что их температура ниже температуры других участков лица, свидетельствуют о сужении кровеносных сосудов, предшествующем инсульту — кровоизлиянию в мозг. Инфравидение позволило также обнаруживать злокачественные опухоли, скрытые глубоко под кожей. Скорость деления клеток опухоли больше, чем у здоровой ткани, поэтому ее температура на 1,5–2 °C выше и на инфраграмме она выглядит светлым пятном на темном или сером фоне.

По повышению температуры можно судить о заболевании не только человека, но и растений. Здоровое зеленое растение обычно хорошо отражает падающие на него инфракрасные лучи. Растения больные, высыхающие теряют эту способность. Поэтому с помощью инфракрасной аэрофотосъемки удавалось установить заболевание лесов за три года до появления явных симптомов.

Но остановимся: возможные области применения приборов инфракрасного видения бесконечны, ибо бесконечно разнообразие процессов, происходящих в окружающем нас мире. А всякий реальный процесс в природе, всякое реальное движение обязательно сопровождаются более или менее заметными, более или менее явственными тепловыми эффектами. Не будет преувеличением сказать: тайна рождения многих наук заключается лишь в том, что их основоположники сумели очистить реальные процессы от шелухи «тепловых наслоений». Сделать это легче всего было, конечно, там, где такие «наслоения» были минимальны. Вот именно поэтому раньше всех других наук родилась астрономия…

Глава IМИР, В КОТОРОМ ВСЕ ПОНЯТНО, НО КОТОРОГО НЕТ

«Астрономия первая показала нам, что существуют законы, — писал в начале нашего века знаменитый французский математик и механик Анри Пуанкаре. — Наученные этим опытом, мы лучше разглядели наш собственный мир, где под кажущимся беспорядком нашли ту же гармонию, с которой нас познакомило изучение неба. Наш земной шар тоже подчиняется законам, но они более сложны, находятся в кажущемся противоречии друг с другом, и глаз, не привыкший к иного рода зрелищам, видел бы в мире один лишь хаос и царство случая и каприза».

Какое зримое, какое явственное, какое коренное различие!

Идеальный, но бесконечно далекий от нас мир небесных тел, и реальный, бесконечно близкий, определяющий все наше существование мир родной планеты. С одной стороны — движение миров, предсказуемое на сотни лет вперед, с другой — погода, которую не всегда удается предсказать с уверенностью даже на несколько суток вперед.

Значит, движение атомов и молекул на Земле подчиняется иным законам, чем в космическом пространстве? Значит, физика явлений изменяется по мере их удаления от нас? И если нет (ибо предполагать такую возможность было бы возвратом к тому самомнению, от которого человечество было отучено Коперником и Дарвином), то в чем же различие между движением тел в космосе и на Земле?

Мы не ошибемся, сказав: все это различие имеет своей причиной один-единственный физический процесс — понимаемое в широком смысле слова трение. То есть трение, понимаемое как процесс непосредственного превращения различных форм движения в тепловое движение. В представлении большинства людей трение — это процесс выделения теплоты между двумя движущимися относительно Друг друга твердыми поверхностями. Но ведь теплота выделяется и тогда, когда вязкая жидкость движется в трубе или в канаве. И тогда, когда в самой вязкой жидкости возникают турбулентные вихри. Поэтому такие процессы тоже можно назвать трением. Трением можно назвать и выделение теплоты в проводнике, по которому течет электрический ток. Наконец (пока мы просим читателей поверить нам на слово), трением можно назвать даже такой процесс, как движение теплоты от нагретого к холодному концу теплопроводного стержня.

Накладываясь на идеальные процессы — абстракции, исследованием которых занимается классическая механика, классическая электродинамика, классическая термодинамика, — широко понимаемое трение резко изменяет картину идеального мира, такого, каким он должен был бы быть, если бы в нем выполнялись законы только этих наук.

Действительно, в полном соответствии с законом сохранения энергии все формы движения могут сколь угодно долго и без малейших потерь переходить одна в другую. В принципе, такие взаимопревращения, не затухая, могут продолжаться вечно, и в этом смысле все формы движения равноправны. Но если в цепь, состоящую из механических, электромагнитных, химических и других элементов, включить звено, в котором есть трение, электрическое сопротивление или теплопроводность, картина меняется. Каждое из таких звеньев оказывается своеобразной ловушкой, в которой различные формы движения превращаются в тепловое. А это превращение принципиально отличается от остальных тем, что оно никогда не может быть полностью обратимым. Вот почему включение подобного звена в цепь взаимопревращений приводит к тому, что движение в цепи затухает, и тем быстрее, чем больше трение.