Под знаком необратимости (Очерки о теплоте) — страница 10 из 26

Но если это так, то почему не попытаться построить двигатель Карно, работающий по реальному циклу, пускай даже с некоторыми потерями? Ведь уже при 2000 °C КПД цикла Карно вдвое превышает КПД самых лучших современных тепловых двигателей.

Сади Карно прекрасно понимал, почему нет смысла гнаться за этими выгодами. «Нельзя надеяться, — писал он, — хотя бы когда-либо практически использовать всю движущую силу топлива. Попытки, сделанные для приближения к этому результату, будут скорее вредными, чем полезными, если они заставят забыть другие важные обстоятельства. Экономия топлива — это лишь одно из условий, которое должны выполнять тепловые машины; при многих обстоятельствах оно второстепенно, оно часто должно уступать первенство надежности, прочности, долговечности машины, малому занимаемому месту, дешевизне ее установки и т. д.».

Потому-то и не построен до сих пор двигатель Карно, что при сравнительно небольшой мощности он должен иметь огромные размеры, прочность и вес. Действительность властно вторгается в теоретические построения, и то, что кажется сверхвыгодным на бумаге, на практике уступает место иным, теоретически не столь выгодным решениям. Мы знаем, что чем выше нагрето рабочее тело, тем экономичнее тепловой двигатель. Современные виды топлива при сгорании дают температуру около 2000 °C. Ни один из ныне существующих конструкционных материалов не в состоянии длительно выдерживать такую температуру. Поэтому приходится искусственно понижать температуру рабочего тела, подавая в камеры сгорания больше воздуха, чем требуется для горения топлива. А это — прямое снижение КПД. Нередко конструктивные особенности машины, позволяющие работать при более высокой температуре рабочего тела, оказываются важнее теоретических преимуществ цикла. Так, КПД современных газовых турбин меньше, чем у дизелей, хотя теоретически такие турбины должны быть выгоднее дизелей. Это объясняется тем, что в дизеле периодичность работы облегчает охлаждение поршней, в результате температура рабочего тела может достигать 1500–1800 °C, в то время как лопатки газовых турбин, находящиеся под непрерывным воздействием потока раскаленных газов, ограничивают температуру рабочего тела 900—1000 °C. Действительность накладывает и другие ограничения. Например, при одинаковых степенях сжатия цикл Отто, по которому работают бензиновые моторы, экономичнее, чем цикл Дизеля. Но в цилиндрах бензиновых моторов сжимается горючая смесь, которая при высоких степенях сжатия самовоспламеняется. В цилиндрах же дизеля сжимается чистый воздух, в который потом впрыскивается топливо. Здесь нет опасности самовоспламенения, допустимы более высокие степени сжатия. В результате дизель оказывается едва ли не самым экономичным тепловым двигателем в современной технике.

Все это не умаляет заслуг Карно. Он первый понял, как надо исследовать тепловые машины: он правильно указал пути развития тепловых двигателей; он указал на несостоятельность ряда направлений. Пусть попытки осуществить его двигатель на практике не удались. Но в результате таких попыток появился двигатель Дизеля. Одного этого было бы достаточно, чтобы считать весомым вклад Карно в термодинамику. Но Карно сделал не только это…

ХОЛОДИЛЬНИК — ДВИГАТЕЛЬ НАОБОРОТ

На первых порах тепловые двигатели дали термодинамике гораздо больше, чем она им. Паровые машины появились и распространились по всему свету задолго до того, как появилась наука, объясняющая их работу. Вот почему, даже и в более поздние времена, среди создателей тепловых двигателей практически нет ученых. Это главным образом изобретатели и инженеры: горный мастер Ползунов, университетский механик Уатт, кораблестроитель Эриксон, священник Стирлинг, инженеры и предприниматели Отто и Дизель.

Холодильная техника родилась иначе. Термодинамика здесь взяла реванш, а ученые вернули долг инженерам. Среди людей, прокладывающих путь к низким температурам, мы видим немало профессоров: лорд Кельвин, профессора Линде, Пикте, Дьюар, Вроблевский, Каммерлинг-Оннес, Капица…

Однако и здесь, как и в теории теплового двигателя, Сади Карно ухитрился опередить всех. Мимоходом, как бы между прочим, он в своем трактате упомянул о том; что идеальный двигатель можно использовать для создания разности температур. Он даже не счел интересным более подробно разобрать этот вопрос. Впрочем, едва ли тогда кто-нибудь, даже он, мог догадываться, что именно создание разностей температур и есть единственная и главная задача тепловых машин в обратимом мире, где энергию топлива в механическую работу можно преобразовать не с помощью теплового двигателя, а с помощью искусственной мышцы. Топливный элемент дает возможность преобразовать энергию топлива в работу электрических сил. Но в таком мире в принципе невозможно обойтись без тепловых машин, если надо нагреть или охладить какое-либо тело.

В реальном мире вопрос с нагревом решается просто: повышенную температуру можно поддерживать за счет теплообмена с раскаленными газами, получающимися при сжигании топлива. А вот поддерживать температуру тела ниже температуры окружающей среды — это гораздо сложнее, здесь без холодильной машины не обойтись. Нам могут возразить: при растворении солей в воде, например селитры — нитрата калия, температура раствора заметно понижается. Разве за счет этого процесса нельзя охлаждать тело ниже температуры окружающей среды без всяких машин?

Как ни парадоксально, такое растворение лишь подтверждает нашу правоту: оно есть часть цикла своеобразной холодильной машины. Действительно, чтобы такая установка работала непрерывно, соль из раствора надо выпаривать, конденсировать и охлаждать воду и, снова смешивая их, получать пониженную температуру. Вся эта последовательность процессов образует своеобразный холодильный цикл, далекий, кстати, от идеального. Но главный принцип получения низких температур остается одним и тем же для любых циклов: когда теплоизолированное рабочее тело совершает работу, температура его понижается. Охлаждается сжатый газ при расширении в теплоизолированном цилиндре, охлаждается раствор при растворении селитры, охлаждается парамагнитная соль при размагничивании. Но чтобы охлаждение происходило непрерывно, мы должны получать все новые и новые порции сжатого газа, воды и селитры, намагниченной парамагнитной соли.

Наиболее мощные холодильные машины, как и тепловые двигатели, получаются тогда, когда рабочим телом служит газ или пар. Какие операции нужно проделать с газом, чтобы получить пониженную температуру? Сначала нужно повысить его температуру, сжав в теплоизолированном сосуде. Потом отвести тепло, охладив до температуры окружающей среды. Если теперь этот сжатый охлажденный газ заставить расширяться в цилиндре, совершая работу, температура его понизится. Отнимая тепло от охлаждаемого тела, газ нагреется до первоначальной температуры. И он снова готов к повторению цикла.

Так же как и для тепловых двигателей, возможны разные комбинации процессов, дающие разные холодильные циклы. В принципе любому тепловому двигателю — дизелю, паровой машине, газовой турбине соответствует свой «антипод» — холодильная машина, работающая по такому же циклу, но в противоположном направлении. Если тепловой двигатель приводит в движение электрогенератор, то холодильную машину надо приводить в движение электромотором. Если важнейшая характеристика двигателя — мощность, то для холодильной машины важна «холодопроизводительность» — количество теплоты, которое она может отвести за час. Если в топках и камерах сгорания развиваются возможно более высокие температуры, то важнейшим параметром холодильной машины оказывается «мороз», который она создает в холодильной камере. И если энергетики в погоне за экономичностью осваивают все более высокие температуры и мощности, то холодильщики разрабатывают машины, которые в промышленном масштабе позволяли бы получать все более низкие температуры.

Современная энергетика началась с паровой машины, работавшей при весьма умеренных температурах и давлениях. Точно так же и холодильная техника поначалу не претендовала на большее, чем изготовлять искусственный лед с помощью машин, в которых рабочим телом были пары легколетучих жидкостей — эфира, двуокиси серы, двуокиси углерода. В этих машинах холодный, находящийся при низком давлении пар сжимается компрессором, до тех пор пока его температура не станет немного больше температуры окружающей среды. Отдавая теплоту в окружающую среду, пары конденсируются и превращаются в жидкость, имеющую температуру окружающей среды и повышенное давление. Выпуская через клапан эту жидкость в испаритель, где давление низкое, можно заставить ее мгновенно вскипеть и за счет этого понизить температуру. Вот эта-то кипящая холодная жидкость и используется для изготовления льда, охлаждения продуктов и т. д.

Некоторые специалисты считают, что холодильная техника по своему влиянию на жизнь современного человека уступает только радио. Кто не любит мороженое? Кому не знакомы замороженные мясо, овощи, фрукты? Кто не пользуется сейчас домашним холодильником? С тем большим удивлением узнаешь, как мучительно трудно входили в жизнь холодильное дело вообще и холодильные машины в частности.

В 1806 году предприимчивый бостонец Тюдор на практике испытал неумолимое действие закона спроса и предложения. В этом году снаряженный им бриг доставил на о. Мартиника 130 тонн пищевого льда. Но никому не был нужен лед, негде его было хранить. Тюдору пришлось начинать с уговоров и соблазнов. Спустя несколько лет он приучил обитателей жаркого острова к мороженому и охлажденным фруктам и напиткам. Дело пошло в гору.

Заключив контракты на массовую заготовку льда на озерах и реках Новой Англии, Тюдор развозил его по всему свету. В 1849 году его корабли перевезли около 150 тысяч тонн льда, снабжая им около 50 портов в Южной Америке, Персии, Индии. Тюдор приучил обитателей жарких стран пользоваться льдом, его гигантская ледяная империя создала спрос на лед. Один из журналов тех лет так оценивал состояние дел в этой области: «Концентрированный холод в форме льда день ото дня приобретает все большее значение как для промышленных, так и для бытовых нужд. Пивоварение требует длительной выдержки продукта вблизи точки замерзания. У кондитеров нет практически другого средства получить минус 12–18 °C, которые необходимы для изготовления мороженого. Врачи часто используют лед как незаменимое лекарство. Мясники и содержатели гостиниц едва ли смогут отказаться от этого средства хранения мяса… В химическом производстве лед широко применяют для кристаллизации солей, или, говоря более строго, для разделения различных веществ с помощью холода. Пропорционально растущему спросу увеличиваются заготовки льда зимой. Северная Америка в потрясающих количествах поставляет лед в Центральную и Южную Америку, в Индию. Лед из Норвегии идет в английские и германские порты Северного моря.