у совершать работу.
Если на улице температура 293 К, то газ с такой температурой имеет эксергию, равную нулю, хотя его энергия относительно абсолютного нуля довольно велика. А газ при 100 К, обладающий втрое меньшей энергией, имеет эксергию, отличную от нуля. Соединив с ним окружающую среду через идеальную тепловую машину, мы можем использовать эту разницу температур для получения механической работы. Теперь нетрудно понять, что сметливый сосед крал у простодушного баварского лавочника не энергию, как доказывал тот, а эксергию, работоспособность.
При любых изменениях в обратимом мире эксергия остается постоянной. Необратимые процессы — вот истинные «пожиратели эксергии», непрерывно уменьшающие ее запас. Это наводит на мысль, что между эксергией, которая уменьшается в необратимых процессах, и энтропией, которая в них увеличивается, есть какая-то связь. Такая связь действительно существует, но только в тех случаях, когда происходит возрастание энтропии вследствие необратимого процесса. Скажем, подводя обратимо теплоту к телу, мы увеличиваем его энтропию, но эксергия не меняется. Если же нагревать предмет необратимо — энтропия возрастает, а эксергия уменьшается. Следовательно, уменьшение эксергии связано не вообще с увеличением энтропии, а лишь с увеличением энтропии в необратимых процессах.
Понятие эксергии избавляет нас от необходимости каждый раз сравнивать реальный механизм с точно таким же и работающим в таких же условиях идеальным. Теперь достаточно эксергию на выходе из механизма разделить на эксергию на входе, чтобы получить КПД. Этот КПД для всех машин, в том числе и тепловых, меньше единицы, и чем он ближе к единице, тем меньше отличается механизм от идеального.
Основные источники потерь тепловой электростанции Силачом и Огнепоклонником оцениваются по-разному. Так, считая только по ЭНЕРГИИ, Огнепоклонник полагает, что главный источник потерь на электростанции — конденсатор. Силач же, считая по ЭКСЕРГИИ, видит: главный источник потерь — котел. И Силач прав — именно в совершенствовании котлов, в повышении параметров пара — столбовой путь развития энергетики.
Эксергия вносит ясность в понимание работы тепловых машин, она реабилитирует некоторые части тепловых установок и находит истинных виновников потерь. Например, долгое время считалось, что главные потери паровой установки — это теплота, отдаваемая в конденсаторе охлаждающей воде. И действительно, в конденсатор уходит почти половина теплоты, полученной рабочим телом в котле. Котел, наоборот, считался самой экономичной частью установки: КПД, подсчитанный по энергии, получался 96–98 %. Но стоило проследить, что происходит с эксергией, и стало ясно: конденсатор надо реабилитировать, это одна из самых экономичных частей установки, в которой эксергия уменьшается всего на 3 %. И это понятно, температура в конденсаторе всего на несколько градусов выше температуры окружающей среды. Истинный же виновник потерь — котел.
В раздельном существовании топлива и кислорода запасено некоторое количество эксергии. Если провести реакцию окисления обратимо, с помощью идеального топливного элемента, мы не уменьшим этого первоначального количества эксергии. Если же мы сожжем топливо, то эксергия уменьшится. Насколько? Это зависит от температуры получившихся газов. В топке котла температура бушующего факела достигает 1500–1800 °C, а температура пара перед турбинами в лучшем случае достигает всего 600 °C. Теплообмен с перепадом в 900— 1200 °C — вот второй источник потерь в котле. А в общей сложности котел «пожирает» около половины эксергии. Теперь мы новыми глазами можем взглянуть на тепловые машины. Эксергия показывает нам, что всюду, где существуют большие перепады температур, таятся источники потерь: в котлах, в цилиндрах двигателей внутреннего сгорания, между нагретыми газами и охлаждаемыми водой стенками цилиндра, в камерах сгорания газовых турбин. Теперь нам нетрудно понять, сколь расточительно и убыточно печное отопление: при сгорании дров температура 800 °C, а в комнате надо поддерживать 25 °C. Не удивительно, что тепловые насосы имеют немалые перспективы на будущее.
Эксергетический анализ подсказывает и пути устранения потерь в тепловых машинах: разницу температур между теплообменивающимися средами надо всемерно уменьшать. Можно, например, подогревать воздух, идущий в камеру сгорания, за счет выхлопных газов. Тогда перепад температур между факелом и воздухом получится меньше, следовательно, КПД увеличится. Такой прием называют регенерацией. Впервые примененный в прошлом веке шотландцем Стирлингом и шведом Эриксоном, этот способ нашел широкое применение в паровых и газотурбинных установках. Но наибольший успех выпал на долю двигателей Стирлинга и Эриксона с регенераторами в наши дни. Оказалось, что такие двигатели в принципе имеют такую же экономичность, как и двигатели Карно. Однако они не требуют чрезмерно высоких давлений, сравнительно невелики и легки, и именно поэтому к ним во многих странах проявляется повышенный интерес.
Итак, эксергия позволила устранить противоречия и трудности, с которыми столкнулись, говоря о КПД тепловых машин.
Но всюду, где полезное действие основано на использовании необратимости, КПД теряет смысл. Академик А. Харкевич, кажется, первый обратил внимание на серьезные противоречия в понятии КПД. «Чем больше размышляешь о классическом определении КПД, — писал он в 1964 году, — тем больше недостатков в нем находишь. Величина КПД по определению меньше единицы. Это значит, что некоторую долю энергии мы всегда теряем. Единственное, на что годится КПД с его фальшивой универсальностью, — это характеризовать величину потерь… Но КПД никогда не характеризует полезного действия». В самом деле, человеку нужна не энергия сама по себе, а ткани, пища, книги, материалы и т. д., которые с помощью энергии можно получить. Изготовление этих и многих других полезных предметов и вещей возможно только благодаря необратимости. А обратимый мир, будучи чрезвычайно благоприятным местом для получения, преобразования и передачи энергии, не предоставляет никаких возможностей для потребления этой энергии. В нем не могут работать никакие устройства, полезное действие которых основано на необратимости. Для реальных ткацких, бумагоделательных, печатных и других станков нет идеального прототипа, их не с чем сравнивать и потому невозможно оценивать с помощью КПД.
Наш реальный необратимый мир гораздо богаче возможностями, чем мир идеальный, обратимый. И именно поэтому сфера приложимости КПД по необходимости ограничена. Есть в живой природе множество удивительных устройств, которые именно благодаря необратимости происходящих в них процессов позволяют живым существам слышать, видеть, осязать окружающий мир. Есть в технике приборы, позволяющие увидеть, к примеру, инфракрасное, ультрафиолетовое или рентгеновское лицо мира. Есть, наконец, устройства, в которых необратимость позволяет проще и надежнее решить проблемы, головоломные для обратимого мира. Эти устройства бессмысленно оценивать с помощью КПД. Но в энергетике, в преобразовании различных форм движения эксергетический КПД незаменим.
Глава IIIУНИВЕРСАЛЬНАЯ, КАК ГРАВИТАЦИЯ
Всего за несколько минут в топке современного судового котла выделяется тепло, способное превратить его металлические стенки в расплав. В авиационных двигателях это время исчисляется десятками секунд, в атомных реакторах и ракетах — секундами и долями секунд. И если котлы не тают на глазах изумленных кочегаров, если воздух не сдувает с крыльев самолета капли расплава, в который превратились бы моторы, если космические корабли не превращаются в лужи жидкого металла на космодромах, если реакторы не вытекают струйками расплава из залов атомных электростанций, то этим техника обязана теплопередаче.
С точки зрения этой науки любое вещество, любое тело можно уподобить дырявому ведру. В него непрерывной струей льется вода, вытекающая потом мелкими струйками через отверстия в стенках. Чем мощнее вливающаяся струя, тем выше поднимается уровень, при котором из ведра вытекает воды столько же, сколько втекает. И когда этот уровень достигает определенной высоты, ведро не выдерживает напора и разваливается. Замените в этой картине струи воды потоками тепла, уровень в ведре — температурой, а его разрушение — расплавлением, и вы получите довольно точное представление о центральной проблеме современного энергомашиностроения. С одной стороны, законы термодинамики предписывают инженерам стремиться к максимальным температурам рабочего тела — газа или пара; при этом машины получаются компактными и экономичными. С другой — законы физики требуют, чтобы температуры металлических трубок, цилиндров, поршней не превышали температуру, при которой начинается их катастрофическое разрушение.
В умах большинства людей прочно укоренилась справедливая мысль, что в любой реальной машине — механической, электрической, оптической — есть потери, поэтому ее коэффициент полезного действия всегда меньше 100 %. Но всегда ли мы отдаем себе отчет, что эти недостающие проценты КПД, образно говоря, перерабатываются в теплоту. Всюду, где происходит уменьшение КПД, выделяется теплота, повышается температура. Нагреваются подшипники, зубчатые колеса, валы, тормоза, шины автомобилей, шкивы и ремни, обмотки и сердечники трансформаторов и электрических машин, электропроводка, радиолампы, электронно-вычислительные машины. Пока мощность невелика по сравнению с размерами узлов, охлаждение происходит автоматически, при незначительном повышении температуры. Но когда на затяжных спусках начинают гореть тормоза автомобилей, когда в подшипниках мощных двигателей выделяется тепло, способное за несколько минут расплавить вкладыши, когда эфемерная, витающая в математических дебрях электронно-вычислительная машина начинает потреблять сотни киловатт, тогда волей-неволей приходится вспоминать о принудительном охлаждении. И тогда на механических, электрических, оптических устройствах ничего, казалось бы, общего не имеющих с теплотой, появляются прозаические ребра, патрубки и фланцы систем охлаждения, которые в таких случаях оказываются необходимым условием существования машин и сооружений современной техники. Вот почему в основе самых выдающихся достижений XX века — атомной, космической и электронной промышленности — лежит скрытый от поверхностного взгляда прогресс в области теплопередачи, прогресс в умении охлаждать и нагревать, то есть в умении ускорять и замедлять передачу тепла.