Уподобив космическое пространство ледяной глыбе, Уоллес с успехом превратил этот мысленный эксперимент в теорию росы. Он объяснил, почему роса выпадает лишь в ясные тихие дни: облака отражают тепловые лучи обратно на землю, а ветер, благодаря конвекции, быстро уравнивает температуру охлажденного тела с температурой окружающей среды.
Дилетант Уоллес затмил специалистов-метеорологов, потому что, «отказавшись витать в облаках», первым обратил внимание на теплопередачу — процесс, неотвратимо возникающий там, где появляются разности температур. Но он действовал здесь методом «доказательства от противного», ибо в сущности «Трактат о росе» — это трактат о том, как взаимодействие различных механизмов теплопередачи приводит к появлению разности температур.
Теперь, когда мы знаем о трех механизмах подвода и отвода тепла — теплопроводности, излучении и конвекции, мы можем любое тело уподобить сосуду, в который вода наливается через три трубы и через три других выливается. И если, перекрывая в различных сочетаниях эти трубы, мы можем регулировать уровень жидкости в сосуде, то, комбинируя различные виды теплопередачи, мы можем регулировать температуру того или иного тела.
Картина сильно упрощается при переносе тела в космос: вакуум разом отключает все виды теплопередачи, кроме одного — излучения. В межзвездном пространстве, вдали от Солнца и планет, тело начинает излучать свое тепло и его температура падает почти до абсолютного нуля. Черный предмет остывает при этом быстрее, чем серебристый, полированный. Попав в сферу действия солнечного излучения, эти предметы начнут нагреваться, но — неожиданный результат! — максимальная температура у них окажется одинаковой и тем большей, чем ближе предметы к поверхности Солнца. Почему так? Да потому, что максимальная температура устанавливается в тот момент, когда количество тепла, притекающего от Солнца к освещенной стороне, становится равным количеству тепла, излученного в космос затененной стороной.
Серебристое тело плохо поглощает тепло, но зато и плохо излучает его, поэтому в принципе оно нагревается до такой же температуры, что и черное тело, которое хорошо поглощает, но и хорошо излучает. А теперь нетрудно сообразить, какие чудеса можно делать в космосе с помощью кисти и ведерка с краской. Достаточно, например, освещенную сторону черного тела замазать серебристой краской, и его температура начнет понижаться. Если, наоборот, посеребрить теневую сторону, то температура полезет вверх. Ее можно увеличить еще больше, если вокруг посеребренной теневой стороны поставить посеребренный с двух сторон тонкий экран. Девять десятых излученного телом тепла этот экран отражает обратно, а одну десятую излучает. Если поставить за ним еще один экран, потерю тепла можно снизить еще в 10 раз и т. д.
В целом эти несложные зависимости дают неплохое приближение к действительности, если нашу планету рассматривать глазами космического наблюдателя. Действительно, она не более как шарик, витающий вокруг Солнца. Получать и отдавать теплоту такой шарик может только излучением. Считая его поверхность и массу однородной, а в этом случае температура нагрева в солнечных лучах не зависит от излучательной способности, нетрудно вычислить, что его средняя температура должна быть около 18 °C.
Эти допущения, которые для космического наблюдателя не более как средство упрощения расчетов, для нас, живущих на поверхности шарика, — вопрос жизни и смерти. Только оценивая один за другим факторы, влияющие на распределение температуры по поверхности земного шара, начинаешь понимать, на какой, в сущности, тонкой нити висит сама возможность жизни на нашей планете. Ведь для того чтобы во всех точках однородной гладкой сферы, помещенной на место нашей Земли, установилась температура + 18 °C, теплопроводность должна быть бесконечно большой. Только при этом фантастическом условии неравномерность облучения экватора и полюсов, вращение планеты вокруг своей оси и наклон этой оси к плоскости эклиптики не будут влиять на температуру в разных точках поверхности. Но если теплопроводность сравнительно невелика, картина мгновенно меняется. У планеты, «глядящей» на Солнце все время одной стороной, точка, лежащая ближе всех других к светилу, нагревается на несколько сот градусов. Противоположная ей точка на теневой стороне, наоборот, охлаждается на несколько десятков градусов ниже нуля. Температуры в остальных точках имеют промежуточные значения.
Теперь стоит начать вращать такую планету вокруг оси, перпендикулярной к плоскости эклиптики, и резкость температурного распределения смягчается. Вместо сильно нагретой и сильно охлажденной точек на поверхности планеты прочерчивается теплый экватор, на полюсах появляются две наиболее холодные точки. От экватора к полюсам температуры постепенно убывают. Если же наложить еще одно условие и придать оси вращения некоторый наклон к плоскости эклиптики, то при каждом обороте нашей гипотетической планеты вокруг Солнца ее верхняя и нижняя половины будут нагреваться то сильнее, то слабее, знаменуя этим смену времен года.
До сих пор поверхность нашей гипотетической планеты мы считали однородной. В действительности это не так. На земном шаре есть участки, покрытые снегом, песком, пустыней, травой, пашней. Снег отражает около 95 % излучения, песок — 43, пустыня — 30, луг — 20, пашня — 14 %. Находясь на освещенной стороне, пашня нагревается гораздо сильнее, чем снег, внося дополнительное усложнение в картину распределения температуры. Еще больше усложняет дело Мировой океан. Его поверхность отражает всего несколько процентов лучей, когда Солнце светит на него в упор, а вечером, когда светило у горизонта, океан отражает почти все излучение. Температура распределяется неодинаково не только пс поверхности, но и по глубине. Если на суше лучи поглощаются в тонком слое, то у воды и льда дело обстоит иначе. Даже на глубине 4 м можно еще обнаружить 4 % солнечного излучения.
А теперь настало время наложить на это уже достаточно сложное, причудливое распределение температур самый могущественный фактор, смазывающий остроту температурных пиков, — земную атмосферу с ее мощным механизмом теплопередачи — конвекцией. Соприкасаясь с нагретой солнцем пашней или пустыней, воздух нагревается здесь сильнее и устремляется вверх. Давление падает, в это место устремляются потоки воздуха с соседних, более холодных участков, и возникает ветер. Летом, когда суша нагревается сильнее, чем море, ветер устойчиво дует с океанов на материки. Зимой, наоборот, материки «обдувают» моря. Над экватором, разогретым солнцем, непрерывно поднимаются в небо огромные массы теплого воздуха, а на их место мчатся потоки из более холодных областей, создавая устойчивые ветры.
На полюсах массы воздуха охлаждаются, и именно отсюда они разносят холод по всей поверхности земли. Кроме холода, воздушные потоки разносят еще облака, которые непрерывно генерируются солнечными лучами, падающими на поверхность суши и Мирового океана.
Таким образом, атмосфера — это своего рода мельница, которая в жерновах теплопроводности, конвекции и теплового излучения «перемалывает» солнечные лучи, размазывает, размывает, сглаживает острые углы в температурной картине на поверхности нашей планеты. Но даже при действии этого необычайно мощного механизма смягчения температурных пиков разница между самым холодным и самым теплым местом на земном шаре может достигать 140 °C: в Антарктиде температура воздуха зимой падает иногда до минус 83 °C, а в Ливии летом поднимается до плюс 58 °C!
Глава IVМИР, КОТОРЫЙ ЕСТЬ,НО В КОТОРОМ НЕ ВСЕ понятно
«Астрономия первая показала нам, что существуют законы. Наученные этим опытом, мы лучше разглядели наш собственный мир, где под кажущимся беспорядком нашли ту же гармонию, с которой нас познакомило изучение неба». Мы повторили еще раз эти слова Анри Пуанкаре для того, чтобы продолжить их словами русского физика Александра Столетова: «…но явления, наблюдаемые нами вблизи, оказались далеко не так просты, как небесные движения, или не допускали тех абстракций и упрощений. Собственно механические процессы идут рука об руку с более темными процессами — тепловыми, химическими, электрическими».
Только теперь, спустя почти столетие, мы можем в полной мере оценить проницательность нашего соотечественника. В то время как Пуанкаре имел в виду реальные механические процессы, Столетов смотрел на дело шире, ибо в его словах угадывается намек на принципиальное фундаментальное отличие биологических процессов от механических, да и от физических вообще…
Попробуйте порасспрашивать своих знакомых-автомобилистов об их машинах. Они вам сразу же и совершенно точно назовут мощность мотора, расход бензина, скорость и т. д. Но спросите у них, насколько уменьшается от износа вес шин или мотора? Они только пожмут плечами: в автомобиле их интересуют энергетические характеристики, а не происходящие в нем изменения. К биологическим объектам люди относятся совсем иначе. Родители, например, сразу скажут вам, каков рост их ребенка, сколько он прибавил в весе, какие слова научился говорить. Но спросите их, какова мощность ребенка? Сколько теплоты он выделяет в сутки? Сколько весит пища, потребляемая им в течение года? Они пожмут плечами: в детях их интересуют происходящие изменения, а не энергетические характеристики.
Этот пример приведен не для красного словца. На протяжении десятилетий отличием физика от биолога было то, что физик преимущественно интересовался энергетическими характеристиками изучаемых процессов, а биолог — происходящими в изучаемых организмах изменениями. Для физиков необратимость была главным образом источником потерь, помехой, устранение которой позволяло выделить явление в чистом виде. Для биологов устойчивость наблюдавшихся в живых организмах изменений явление настолько само собой разумеющееся, что они даже не задумывались о причинах такой устойчивости. Они даже не подозревали, что эти изменения устойчивы только потому, что благодаря необратимости сопровождаются выделением теплоты, как бы фиксируются возникающей во всех клетках организма энтропией. И это тепловыделение живого организма не досадная помеха, а фундаментальное свойство жизни. Вот почему биолог, который подобно физику попытался бы очистить биологические процессы от необратимости, с изумлением убедился бы, что такое «очищение» равносильно уничтожению биологии, ибо без необратимости немыслимы ни органы чувств, ни память, ни размножение. Короче говоря, без необратимости невозможна жизнь. Да и не только жизнь, но и само время…