Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных — страница 100 из 113

Journal of Paleontology, 76, 347–76.

Xiao S. et al. (2005) A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the USA, 102, 10227–32.

Xiao S. et al. (2021) The Shibantan Lagerstätte: insights into the Proterozoic-Phanerozoic transition. Journal of Geological Society, 178. DOI: 10.1144/jgs2020–135.

Yin Z., Zhu M., Bottjer D. J., Zhao F., Tafforeau P. (2016) Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans. Geology, 44, 735–738.

Yin Z. et al. (2017) Nuclei and nucleoli in embryo-like fossils from the Ediacaran Weng’an Biota. Precambrian Research, 301, 145–51.

Yin Z. et al. (2019) The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology. Current Biology, 29, 4307–14, e2.

Zakrevskaya M. (2014) Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 27–38.

Zhu M. et al. (2008) Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36, 867–70.

Zhuravlev A. Yu. (1993) Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 299–314.

Zhuravlev A. Yu., Gámez Vintaned J. A., Ivantsov A. Yu. (2009) First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geological Magazine, 146, 775–80.

Губки

Журавлев A. Ю., Нитецкий M. Г. O сравнительной морфологии археоциат и рецептакулитов // Палеонтологический журнал. 1985. № 2. C. 121–123.

Alegado R. A. et al. (2012) A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife, 1, e00013. DOI: 10.7554/eLife.00013.

Alvarez B. et al. (2002) Systema Porifera: A Guide to the Classification of Sponges. New York: Kluwer Academic / Plenum Publishers.

Antcliffe J. B., Calloway R. H. T., Brasier M. D. (2014) Giving the early fossil record of sponges a squeeze. Biological Reviews, 89, 972–1004.

Arasuna A. et al. (2018) Structural characterization of the body frame and spicules of a glass sponge. Minerals, 8, 88. DOI: 10.3390/min8030088.

Bobrovskiy I. et al. (2021) Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock record. Nature Ecology & Evolution, 5, 165–8.

Borchiellini C. et al. (2001) Sponge paraphyly and the origin of Metazoa. Journal of Evolutionary Biology, 14, 171–9.

Botting J. P., Butterfield N. J. (2005) Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of the National Academy of Sciences of the USA, 102, 1554–9.

Botting J. P., Muir L. A. (2018) Early sponge evolution: a review and phylogenetic framework. Palaeoworld, 27, 1–29.

Botting J. P., Muir L. A., Xiao S., Li X., Lin J. P. (2012) Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, 45, 463–75.

Botting J. P., Zhang Y., Muir L. A. (2017) Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution. Scientific Reports, 7, 5286. DOI: 10.1038/s41598-017-05604-6.

Boyajian G. E., Labarbera M. (1987) Biomechanical analysis of passive flow of stromatoporoids – Morphologic, paleoecologic, and systematic implications. Lethaia, 20, 223–9.

Carrera M. G., Maletz J. (2014) Ordovician sponge spicules from the Spitsbergen, Nevada and Newfoundland: new evidence for hexactinellid and demosponge early diversification. Journal of Systematic Palaeontology, 12, 961–81.

Chen J. et al. (2004) Sponge fossil assemblage from the Early Cambrian Hetang Formation in southern Anhui. Chinese Science Bulletin, 49, 1625–8.

Conway K., Barrie J., Krautter M. (2005) Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry. Geo-Marine Letters, 25, 205–13.

Debrenne F. et al. (2015) Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Vol. 4–5: Hypercalcified Porifera. – Lawrence, Kansas: University Kansas Paleontological Institute.

Ehrlich H. et al. (2010) Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nature Chemistry, 2, 1084–8.

Ehrlich H. et al. (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Scientific Reports, 3, 03497. DOI: 10.1038/srep03497.

Ereskovsky A. V. et al. (2009) The homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology. BioEssays, 31, 89–97.

Fairclough S. R., Dayel M. J., King N. (2010) Multicellular development in a choanoflagellate. Current Biology, 20, R875–6.

Fairclough S. R. et al. (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biology, 14, R15. DOI: 10.1186//gb-2013-14-2-r15.

Fernandes M. C. et al. (2021) Mechanically robust lattices inspired by deep-sea glass sponges. Nature Materials, 20, 237–41.

Finks R. M., Reid R. E. H., Rigby J. K. (2004) Treatise on Invertebrate Paleontology, Part E (Revised), Porifera, Vol. 3: Porifera (Demospongea, Hexactinellida, Heteractinida, Calcarea). – Boulder, Colorado: Geological Society of America; Lawrence, Kansas: University Kansas Paleontological Institute.

Gautret P., Reitner J., Marin F. (1996). Mineralization events during growth of the coralline sponges Acanthochaetetes and Vaceletia. Bulletin de l’Institut océanographique de Monaco, no. special 14, 325–334.

Gazave E. et al. (2012) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia, 687, 3–10.

Harvey T. H. P. (2010) Carbonaceous preservation of Cambrian hexactinellid sponge spicules. Biological Letters, 6, 834–7.

Kirkpatrick R. (1908) On two new genera of Recent pharetronid sponges. Annals and Magazine of Natural History; Zoology, Botany, and Geology, Series 8, 2, 503–514.

Kirkpatrick R. (1913) The Nummulosphere. An Account of the Organic Origin of So-Called Igneous Rocks and of Abyssal Red Clays. – L.: Lamley & Co.

Kozur H. W., Mostler H., Repetski J. E. (2008) A new heteractinellid sponge from the lowermost Ordovician of Nevada and a discussion of the suborder Heteractinellidae. Geo.Alp, 5, 53–67.

Kruse P. D., Zhuravlev A. Yu. (2008) Middle-Late Cambrian Rankenella-Girvanella reefs of the Mila Formation, northern Iran. Canadian Journal of Earth Sciences, 45, 619–39.

Lavrov A. I., Kosevich I. A. (2018) Stolonial movement: A new type of whole-organism behavior in Porifera. The Biological Bulletin, 234 (1), 58–67.

Lee W. L. et al. (2012) An extraordinary new carnivorous sponge, Chondrocladia lyra, in the new subgenus Symmetrocladia (Demospongiae, Cladorhizidae), from off of northern California, USA. Invertebrate Biology, 131, 259–84.

Leys S. P. (2003) The significance of syncytial tissues for the position of the Hexactinellida in the Metazoa. Integrative and Comparative Biology, 43, 19–27.

Leys S. P. (2015) Elements of a ‘nervous system’ in sponges. The Journal of Experimental Biology, 218, 581–91.

Luo C., Zhao F., Zeng H. (2020) The first report of a vauxiid sponge from the Cambrian Chengjiang Biota. Journal of Paleontology, 94, 28–33.

Luo C., Yang A., Zhuravlev A. Y., Reitner J. (2021) Vauxiids as descendants of archaeocyaths: a hypothesis. Lethaia. DOI: 10.1111/let.12433.

Maldonado M. (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebrate Biology, 123, 1–22.

Mehl D. (1996) Phylogenie und Evolutionsökologie der Hexactinellida (Porifera) im Paläozoikum. Geologische Paläontologische Mitteilungen der Universität Innsbruck, Sonderband, 4, 1–55.

Mills D. B. et al. (2018) The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. eLife, 7, e31176. DOI: 10.7554/eLife.31176.

Mostler H. (1990) Mikroskleren von Demospongien (Porifera) aus dem basalen Jura der nördlichen Kalkalpen. Geologische Paläontologische Mitteilungen der Universität Innsbruck, 17, 119–42.

Mostler H. (1996) Polyactinellid Schwämme, eine auf das Paläozoikum beschränkte Calcispongien-Gruppe. Geologische Paläontologische Mitteilungen der Universität Innsbruck, 21, 223–43.

Nitecki M. H. (1972) North American Silurian receptaculitid algae. Fieldiana (Geology), 28, 1–108.

Peña J. F. et al. (2016) Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges. EvoDevo, 7, 13. DOI: 10.1186/s13227-016-0050-x.

Pronzato R., Manconi R. (2008) Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage. Marine Ecology, 29, 146–66.

Pronzato R., Pisera A., Manconi R. (2017) Fossil freshwater sponges: Taxonomy, geographic distribution, and critical review. Acta Palaeontologica Polonica, 62, 467–95.

Rhebergen F., Botting J. P. (2014) A new Silurian (Llandovery, Telychian) sponge assemblage from Gotland, Sweden.