Похождения видов. Вампироноги, паукохвосты и другие переходные формы в эволюции животных — страница 106 из 113

Proceedings of the National Academy of Sciences of the USA, 114, E1913–22.

Shcherbakov D. E., Vinn O., Zhuravlev A. Yu. (2021) Disaster microconchids from the uppermost Permian and Lower Triassic strata of the Cis-Urals and the Tunguska and Kuznetsk basins (Russia). Geological Magazine, 158, 1335–57.

Shore A. J., Wood R. A., Butler I. B., Zhuravlev A. Yu., McMahon S., Curtis A., Bowyer F. T. (2021) Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion. Science Advances, 7, eabf2933. DOI: 10.1126/sciadv.abf2933.

Skovsted C. B. et al. (2009) The tommotiid Camenella reticulosa from the early Cambrian of South Australia: Morphology, scleritome reconstruction, and phylogeny. Acta Palaeontologica Polonica, 54, 525–40.

Skovsted C. B. et al. (2009) The scleritome of Paterimitra: an early Cambrian stem group brachiopod from South Australia. Proceedings of the Royal Society of London B: Biological Sciences, 276, 1651–6.

Skovsted C. B. et al. (2011) Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia. Palaeontology, 54, 253–86.

Skovsted C. B., Betts M. J., Topper T. P., Brock G. A. (2015) The early Cambrian tommotiid genus Dailyatia from South Australia. Memoirs of the Association of Australasian Palaeontologists, 48, 1–117.

Sun H., Babcock L. E., Peng J., Zhao Y. (2016) Three-dimensionally preserved digestive systems of two Cambrian hyolithides (Hyolitha). Bulletin of Geosciences, 91, 51–6.

Sun H. et al. (2018) Hyoliths with pedicles illuminate the origin of the brachiopod body plan. Proceedings of the Royal Society of London B: Biological Sciences, 285, 20181780. DOI: 10.1098/rspb.2018.1780.

Sutton M. D., Briggs D. E. G., Siveter D. J., Siveter D. J. (2005) Silurian brachiopod with soft-tissue preservation. Nature, 436, 1013–5.

Taylor P. D., Vinn O. (2006) Convergent morphology in small spiral worm tubes (‘Spirorbis‘) and its palaeoenvironmental implications. Journal of the Geological Society of London, 163, 225–8.

Taylor P. D., Waeschenbach A. (2015) Phylogeny and diversification of bryozoans. Palaeontology, 58, 585–99.

Taylor P. D., Weedon M. J. (2000) Skeletal ultrastructure and phylogeny of cyclostome bryozoans. Zoological Journal of the Linnean Society, 128, 337–99.

Taylor P. D., Vinn O., Wilson M. A. (2010) Evolution of biomineralisation in ‘lophophorates’. Special Papers in Palaeontology, 84, 317–33.

Taylor P. D., Lombardi C., Cocito S. (2014) Biomineralization in bryozoans: present, past and future. Biological Reviews, 90, 1118–50.

Taylor P. D., Di Martino E., Martha S. O. (2019) Colony growth strategies, dormancy and repair in some Late Cretaceous encrusting bryozoans; insights into the ecology of the Chalk seabed. Palaeobiodiversity and Palaeoenvironments, 99, 425–46.

Topper T. P., Zhang Z., Gutiérrez-Marco J. C., Harper D. A. T. (2018) The down of a dynasty: life strategies of Cambrian and Ordovician brachiopods. Lethaia, 51, 254–66.

Towe K. M. (1978) Tentaculites: Evidence for a brachiopod affinity? Science, 201, 626–8.

Vinn O., Taylor P. D. (2007) Microconchid tubeworms from the Jurassic of England and France. Acta Palaeontologica Polonica, 52, 391–9.

Wei F. (2019) Conch size evolution of Silurian – Devonian tentaculitoids. Lethaia, 52, 454–63.

Williams A. et al. (1996) A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 1171–93.

Williams A. et al. (2000) Treatise on Invertebrate Paleontology, Part H, Brachiopoda, Revised, Vol. 2 & 3. Ed. R. L. Kaesler. Boulder, Colorado: Geological Society of America; Lawrence, Kansas: University Kansas.

Zatoń M., Olempska E. (2017) A family-level classification of the Order Microconchida (Class Tentaculita) and the description of two new microconchid genera. Historical Biology, 29, 885–94.

Zatoń M., Vinn O., Tomescu A. M. F. (2012) Invasion of freshwater and variable marginal marine habitats by microconchid tubeworms – an evolutionary perspective. Geobios 45, 603–10.

Zhang Z. et al. (2009) Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China). Geobios, 42, 649–61..

Zhang Z. et al. (2011) The exceptionally preserved Early Cambrian stem rhynchonelliform brachiopod Longtancunella and its implications. Lethaia, 44, 490–5..

Zhang Z.-F. et al. (2014) An early Cambrian agglutinated tubular lophophorate with brachiopod characters. Scientific Reports, 4, 4682. DOI: 10.1038/srep04682.

Zhang Z., Popov L. E., Holmer L. E., Zhang Z. (2018) Earliest ontogeny of early Cambrian acrotretoid brachiopods – first evidence for metamorphosis and its implications. BMC Evolutionary Biology, 18, 42. DOI: 10.1186/s12862-018-1165-6.

Zhang Z. et al. (2020) The oldest ‘Lingulellotreta’ (Lingulata, Brachiopoda) from China and its phylogenetic significance: integrating new material from the Cambrian Stage 3–4 Lagerstätten in eastern Yunnan, South China. Journal of Systematic Palaeontology, 18, 945–73.

Zhuravlev A. Yu., Wood R. A., Penny A. M. (2015) Ediacaran skeletal metazoan revealed to be complex lophophorate. Proceedings of the Royal Society of London B, 282, 20151860. DOI: 10.1098/rspb.2015.1860.

Экдисозои

Журавлев А. Ю. Мир, которого не может быть // Природа. 1995. № 12. C. 21–8.

Малахов В. В. Cephalorhyncha – новый тип животного царства, объединяющий Priapulida, Kinorhyncha, Gordiacea, и система первичнополостных червей // Зоологический журнал. 1980 Т. 59, № 4. С. 485–499.

Малахов В. В., Андрианов А. В. Головохоботные (Cephalorhyncha) – новый тип животного царства. – М.: KMK Scientific Press, 1995.

Aguinaldo A. M. A. et al. (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–93.

Aldridge R. J. et al. (2007) The systematics and phylogenetic relationships of vetulicolians. Palaeontology, 50, 131–68.

Babcock L. E., Robison R. A. (1989) Preference of Palaeozoic predators. Nature, 337, 695–6.

Briggs D. E. G., Lieberman B. S., Halgedahl S. L., Jarrard R. D. (2005) A new metazoan from the Middle Cambrian of Utah and the nature of Vetulicolia. Palaeontology, 48, 681–6.

Budd G. E. (1998) Arthropod body-plan evolution in the Cambrian with an example of anomalocaridid muscle. Lethaia, 31, 197–210.

Budd G. E. (2001) Tardigrades as ‘stem-group arthropods’: The evidence from the Cambrian fauna. Zoologischer Anzeiger, 240, 265–79.

Budd G. E. (2021) The origin and evolution of the euarthropod labrum. Arthropod Structure & Development, 62, 101048. DOI: 10.1016/j.asd.2021.101048.

Cardia D. F. F. et al. (2019) Two new species of ascaridoid nematodes in Brazilian Crocodylomorpha from the Upper Cretaceous. Parasitology International, 72, 101947. DOI: 10.1016/j.parint.2019.101947.

Caron J.-B. (2006) Banffia constricta, a putative vetulicolid from the Middle Cambrian Burgess Shale. Transactions of the Royal Society of Edinburgh: Earth Sciences, 96 (for 2005), 95–111.

Caron J.-B., Smith M. R., Harvey T. H. P. (2013) Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20131613. DOI: 10.1098/rspb.2013.1613.

Chen Z., Zhou C., Yuan X., Xiao S. (2019) Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature, 573, 412–5.

Cong P. et al. (2014) Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature, 513, 538–42.

Cong P. et al. (2017) Host-specific infestation in early Cambrian worms. Nature Ecology & Evolution, 1, 1465–9.

Conway Morris S. (1977) Fossil priapulid worms. Special Papers in Palaeontology, 20, 1–155.

Daley A. C., Edgecombe G. D. (2014) Morphology of Anomalocaris canadensis from the Burgess Shale. Journal of Paleontology, 88, 68–91.

Danovaro R. et al. (2010) The first metazoan living in permanently anoxic conditions. BMC Biology, 8, 30. DOI: 10.1186/1741-7007-8-30.

Dzik J., Krumbiegel G. (1989) The oldest ‘onychophoran’ Xenusion: A link connecting phyla? Lethaia, 22, 169–81.

Eriksson B. J., Tait N. N., Budd G. E. (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. Journal of Morphology, 255, 1–23.

Fleming J. F. et al. (2018) Molecular palaeontology illuminates the evolution of ecdysozoan vision. Proceedings of the Royal Society of London B: Biological Sciences, 285, 20182180. DOI: 10.1098/rspb.2018.2180.

Fracischini H., Dentzien-Dias P., Schultz C. L. (2018) A fresh look at ancient dungs: Brazilian Triassic coprolites revisited. Lethaia, 51, 389–405.

Gámez Vintaned J. A., Liñán E., Zhuravlev A. Yu. (2011) A new early Cambrian lobopod-bearing animal (Murero, Spain) and the problem of the ecdysozoan early diversification. In Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Ed. P. Pontarotti. Berlin; Heidelberg: Springer-Verlag. P. 193–219.

Harvey T. H. P., Dong X., Donoghue P. C. J. (2010) Are palaeoscolecids ancestral ecdysozoans?