Evolution & Development, 12, 177–200.
Hou X.-G., Bergström J., Jie Y. (2006) Distinguishing anomalocaridids from arthropods and priapulids. Geological Journal, 41, 259–69.
Huang D., Chen J., Zhu M., Zhao F. (2014) The burrow dwelling behaviour and locomotion of palaeoscolecidan worms: New fossil evidence from the Cambrian Chengjiang fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 154–64.
Knaust D. (2020) Foraging flatworms and roundworms caught in the act: examples from a Middle Triassic mud flat in Germany. Lethaia, 54, 495–503.
Li L. et al. (2018) Molecular phylogeny and dating reveal a terrestrial origin in the Early Carboniferous for ascaridoid nematodes. Systematic Biology, 67, 888–900.
Liu J., Dunlop J. A. (2014) Cambrian lobopodians: A review of recent progress in our understanding of their morphology and evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 4–15.
Liu J., Han J., Simonetta A. M. (2006) New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang Lagerstätte. Chinese Science Bulletin, 51, 358–63.
Liu J. et al. (2011) An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature, 470, 526–30.
Ma X., Hou X., Bergström J. (2009) Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians. Arthropod Structure & Development, 38, 271–91.
Ma X., Hou X., Edgecombe G. D., Strausfeld N. J. (2012) Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490, 258–61.
Ma X., Edgecombe G. D., Legg D. A., Hou X. (2014) The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis. Journal of Systematic Palaeontology, 12, 445–57.
Maas A., Waloszek D. (2001) Cambrian derivatives of the early arthropod stem lineage, pentastomids, tardigrades and lobopodians – An ‘Orsten’ perspective. Zoologischer Anzeiger, 240, 451–9.
Maas A., Waloszek D., Haug J. T., Müller K. J. (2007) A possible larval roundworm from the Cambrian ‘Orsten’ and its bearing on the phylogeny of Cycloneuralia. Memoirs of the Association of Australasian Palaeontologists, 34, 499–519.
Maas A., Waloszek D., Haug J. T., Müller K. J. (2009) Loricate larva (Scalidophora) from the Middle Cambrian of Australia. Memoirs of the Association of Australasian Palaeontologists, 37, 281–302.
Mayer G., Koch M. (2005) Ultrastructure and fate of nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae) – evidence for the onychophoran antennae being modified legs. Arthropod Structure & Development, 34, 471–80.
Müller K. J., Hinz-Schallreuter I. (1993) Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology, 36, 549–92.
Ou Q., Shu D., Mayer G. (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalisation in Panarthropoda. Nature Communications, 3, 1261. DOI: 10.1038/ncomms2272.
Park T.-Y. S. et al. (2018) Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head. Nature Communications, 9, 1019. DOI: 10.1038/s41467-018-03464-w.
Paterson J. R., Edgecombe G. D., García-Bellido D. C. (2020) Disparate compound eye of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology. Science Advances, 6, eabc6721. DOI: 10.1126/sciadv.abc6721.
Peel J. S. (2010) A corset-like fossil from the Cambrian Sirius Passet Lagerstätte of North Greenland and its implications for cycloneuralian evolution. Journal of Paleontology, 84, 332–40.
Poinar G., Jr. (2017) A mermithid nematode, Cretacimermis aphidophilus sp. n. (Nematoda: Mermithidae), parasitising an aphid (Hemiptera: Burmitaphididae) in Myanmar amber: a 100 million year association. Nematology, 19, 509–13.
Poinar G., Jr., Buckley R. (2006) Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber. Journal of Invertebrate Pathology, 93, 36–41.
Poinar G., Jr., Kerp H., Haas H. (2008) Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology, 10, 9–14.
Smith F. W. et al. (2016) The compact body plan of tardigrades evolved by the loss of a large body region. Current Biology, 26, 224–9.
Steiner M. et al. (2014) The developmental cycles of early Cambrian Olivooidae fam. nov. (?Cycloneuralia) from the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 398, 97–124.
Van Roy P., Daley A. C., Briggs D. E. G. (2015) Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature, 522, 77–80.
Vinther J., Smith M. P., Harper D. A. T. (2011) Vetulicolians from the Lower Cambrian Sirius Passet Lagerstätte, North Greenland, and the polarity of morphological characters in basal deuterostomes. Palaeontology, 54, 711−9.
Wang D. et al. (2020) Cuticular reticulation replicates the pattern of epidermal cells in lowermost Cambrian scalidophoran worms. Proceedings of the Royal Society of London B, 287, 20200470. DOI: 10.1098/rspb.2020.0470.
Whittington H. B., Briggs D. E. G. (1985) The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society B: Biological Sciences, 309, 569–609.
Wolff C., Scholtz G. (2008) The clonal composition of biramous and uniramous arthropod limbs. Proceedings of the Royal Society of London B: Biological Sciences, 275, 1023–8.
Young F. J., Vinther J. (2017) Onychophoran-like myoanatomy of the Cambrian gilled lobopodian Pambdelurion whittingtoni. Palaeontology, 60, 27−54.
Zhuravlev A. Yu., Gámez Vintaned J. A., Liñán E. (2011) The Palaeoscolecida and the evolution of the Ecdysozoa // Palaeontographica Canadiana, 31, 177–204.
Мельников О. А., Еськов К. Ю., Расницын А. П. К проморфологии хелицеровых // Известия АН СССР. Серия биологическая. 1992. № 3. С. 405–416.
Шпинёв Е. С. Новые данные об эвриптеридах (Eurypterida, Chelicerata) верхнего карбона Донецкого угольного бассейна // Палеонтологический журнал. 2014. № 3. С. 67–72.
Шпинёв Е. С. Новые данные о каменноугольных мечехвостах (Xiphosura, Chelicerata) Донецкого угольного бассейна // Палеонтологический журнал. 2018. № 3. С. 49–62.
Шпинёв Е. С., Василенко Д. В. Первая ископаемая яйцекладка мечехвостов (Chelicerata, Xiphosura) из карбона Хакасии // Палеонтологический журнал. 2018. № 4. С. 48–52.
Anderson R. P., McCoy V. E., McNamara M. E., Briggs D. E. G. (2014) What big eyes you have: the ecological role of giant pterygotid eurypterids. Biology Letters, 10, 20140412. DOI: 10.1098/rsbl.2014.0412.
Aria C., Caron J.-B. (2017) Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evolutionary Biology, 17, 261. DOI: 10.1186/s12862-017-1088-7.
Aria C., Caron J.-B. (2019) A middle Cambrian arthropod with chelicerae and proto-book gills. Nature, 573, 586–9.
Aria C., Zhao F., Zeng H., Guo J., Zhu M. (2020) Fossils from South China redefine the ancestral euarthropod body plan. BMC Evolutionary Biology, 20, 4. DOI: 10.1186/s12862-019-1560-7.
Bicknell R. D. C., Pates S. (2020) Pictorial atlas of fossil and extant horseshoe crabs, with focus on Xiphosurida. Frontiers in Earth Science, 8 (98), 1–60. DOI: 10.3389/feart.2020.00098.
Bicknell R. D. C., Paterson J. R., Caron J.-B., Skovsted C. B. (2018) The gnathobasic spine microstructure of recent and Silurian chelicerates and the Cambrian artiopodan Sidneyia: Functional and evolutionary implications. Arthropod Structure & Development, 47, 12–24.
Bicknell R. D. C. et al. (2019) On the appendicular anatomy of the xiphosurid Tachypleus syriacus and the evolution of fossil horseshoe crab appendages. The Science of Nature, 106, 38. DOI: 10.1007/s00114-019-1629-6.
Briggs D. E. G., Collins D. (1998) A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology, 31, 779–98.
Briggs D. E. G. et al. (2012) Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proceedings of the National Academy of Sciences of the USA, 109, 15702–5.
Butterfield N. J. (2002) Leanchoilia guts and interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28, 155–71.
Charbonnier S., Vannier J., Riou B. (2007) New sea spiders from the Jurassic La Voulte-sur-Rhône Lagerstätte. Proceedings of the Royal Society of London B: Biological Sciences, 274, 2555–61.
Di Z., Edgecombe G. D., Sharma P. P. (2018) Homeosis in a scorpion supports a telepodal origin of pectines and components of the book lungs. BMC Evolutionary Biology, 18, 73. DOI: 10.1186/s12862-018-1188-z.
Dunlop J. A. (1994) Filtration mechanisms in the mouthparts of tetrapulmonate arachnids (Trigonotarbida, Araneae, Amblypygi, Uropygi, Schizomida). Bulletin of the British Arachnological Society, 9, 267–73.
Dunlop J. A., Barov V. (2005) A new fossil whip spider (Arachnida: Amblypygi) from the Crato Formation of Brazil. Revista Ibérica de Arachnología, 12, 53–62.
Dunlop J. A., Garwood R. J. (2017) Terrestrial invertebrates in the Rhynie chert ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160493. DOI: 10.1098/rstb.2016.0493.