иоспермизация), птиц (наверное, «авизация», хотя в этом случае термин еще не придумали), наземных четвероногих (тетраподизация) и, вероятно, многих других крупных групп организмов.
Лей Ван Вален из Чикагского университета больше интересовался не морфологическими, а количественными закономерностями. Он заметил, что темпы вымирания в пределах каждой группы организмов постоянны, и связал это с невозможностью для одного вида из данной группы достичь преимущества перед всеми другими в доступе к ресурсам, поскольку другие в ответ начнут улучшать свое положение. Эта идея известна теперь как «Гипотеза Черной Королевы», поскольку ее автор отсылает к известной фразе из «Алисы в Зазеркалье» Льюиса Кэрролла: «…здесь, знаешь ли, тебе приходится бежать со всех ног, чтобы остаться на том же месте». Гипотеза, по сути, переводила дарвиновское понятие «борьба за существование» на язык проверяемых статистических моделей, а также объясняла причину, по которой не бывает «невзрачных предков». Статья Ван Валена «Новый эволюционный закон» появилась на первых страницах нового журнала Evolutionary Theory (1973), созданного им самим, чтобы уйти с рутинных дорог тогдашней биологии, уже сильно подсевшей на правительственные гранты.
(А теперь взглянем, например, на раннекембрийские рифы Сибири или каменноугольный лес Западной Пангеи: что произошло с этими сообществами за несколько миллионов лет? Виды в сообществах менялись, а совокупность признаков, которыми они обладали, оставалась неизменной: получается «бег на месте» Ван Валена по «рефреновым рельсам» Мейена.)
Работавший в том же университете палеобиолог Джон (Джек) Сепкоски решился посчитать вообще все роды (сначала, конечно, отряды и семейства), попавшие в палеонтологическую летопись и, позднее, в издания, собранные в американских научных библиотеках, благо на службу науке пришли компьютеры. (Статья, вышедшая в 1993 г., так и называлась – «Десять лет в библиотеке: новые данные подтверждают палеонтологические модели».) Ему удалось построить количественную кривую разнообразия морских организмов за весь фанерозойский эон, включая эдиакарский период (примерно с 600 млн лет назад до настоящего времени). Примечательно, что Джон Филлипс из Оксфордского университета, племянник и ученик Уильяма Смита, начертил подобный график еще в 1860 г. Его сугубо эмпирическая кривая напоминает ту, которую 120 лет спустя вывели на основе количественных данных: относительно низкое палеозойское плато и мезокайнозойский взрывной рост разнообразия, прерванный на границе мелового и палеогенового периодов. Опираясь на летопись морских скелетных животных как наиболее полную, Сепкоски не только выявил три главные волны нарастания разнообразия (раннекембрийская, среднеордовикская эпохи и середина мезозойской-кайнозойской эры), но и подтвердил наличие по крайней мере пяти массовых вымираний: ордовикско-силурийского, франско-фаменского (конец девонского периода), пермско-триасового, позднетриасового и мел-палеогенового. Кроме того, он обнаружил, что фанерозойская история морского мира представляла собой наложение относительно независимых летописей трех эволюционных фаун (кембрийской, палеозойской и современной). Причем каждая последующая из них достигала пика своего разнообразия медленнее, но сам пик был в три – пять раз выше предыдущего.
Одни из лучших популяризаторов палеонтологии – Стивен Гулд из Гарвардского университета и Нил Элдредж из Американского музея естественной истории – в начале 1970-х гг. стали соавторами новой эволюционной теории, названной теорией прерывистого равновесия. Изучая кайнозойских улиток и палеозойских трилобитов, они заметили, что отдельные виды на протяжении миллионов лет пребывали как бы в неизменности (по крайней мере, внешне), а затем в одно мгновение превращались в новые виды. Правда, «мгновение» это – геологическое, и длилось оно сотни тысяч лет. Встреченный сначала с большим энтузиазмом или, наоборот, в штыки, пунктуализм, который противопоставлялся дарвиновскому градуализму (буквально «постепенности»), объявленного авторами переворота в науке не совершил. Хотя бы потому, что и Чарльз Дарвин не исключал перепадов в темпах видообразования. Вероятно, в определенные времена, например в кембрийском периоде, виды животных действительно менялись на «повышенных скоростях». Ведь заполнялось практически пустующее пространство планеты. В иные эпохи все могло развиваться совершенно иначе.
Палеонтолог Герат Вермей из Калифорнийского университета (Дейвис) не ограничился количественным анализом окаменелостей. В книге «Эволюция и эскалация: экологическая история жизни» (1987) он показал, что история дырок в раковинах даже в большей степени, чем история зубов, клешней и прочих приспособлений для взламывания, прокусывания и дробления чужих защитных приспособлений, позволяет выстроить историю хищников и столь зависимого от них остального мира. У него получилось три этапа: раннекембрийский большой эволюционный взрыв (540–515 млн лет назад), великая ордовикская революция (480–450 млн лет назад) и мезокайнозойская эскалация (240 млн лет назад – настоящее время).
На суше мир был не менее тесно взаимосвязан, что позволяло биоте выдержать любой удар извне (падение астероида, взрыв вулкана), хотя и не без потерь. Более того, поступательное развитие самой биоты могло приводить к периодическим кризисным явлениям, на что обратил внимание палеоэнтомолог Владимир Васильевич Жерихин из Палеонтологического института АН СССР. Так, меловые насекомые, составлявшие основу биоразнообразия суши, кризис, связанный с падением метеорита, как-то не ощутили. По мнению ученого, они испытали его гораздо раньше – в середине мелового периода, примерно за 35 млн лет до ужасного события. Именно тогда древние, мезозойские, группы стремительно стали замещаться современными: наступила пора мотыльков, общественных насекомых (пчел, ос, муравьев, термитов, жуков-короедов), а также жуков – златок и долгоносиков. Все эти «шестиножки» питаются разными тканями и выделениями цветковых, и поэтому Жерихин предположил, что на суше свершилась революция: на смену голосеменным пришли цветковые, или покрытосеменные, составляющие 90 % разнообразия современных наземных растений. Конечно, появились они раньше – к началу мелового периода, но главенствующее положение действительно начали занимать в середине этого интервала, и к моменту образования Чиксулубского кратера и сопутствующих геохимических аномалий от прежнего великолепия гингково-беннеттитовых и ногоплодниково-пельтаспермовых лесов и гнетовых лугов остались жалкие рощицы в дальних горах и на затерянных островах. (Сегодня известно, что сделать это цветковым удалось благодаря более плотному жилкованию листовой пластины, позволившему захватывать больше углекислого газа, а значит, углерода, при меньших потерях влаги.) В итоге кайнофит («новая поросль») опередил кайнозой («новую жизнь») на те самые 35 млн лет и повлиял на суше на все остальное: вслед за растениями должны были измениться или исчезнуть прежние растительноядные животные, а затем и хищники, а им на смену – подоспеть новые, которым трудно было влиться в существующие сообщества, или ценозы. А вот «полуразрушенная» система могла быстро перестроиться на новый лад. Ученый назвал это событие «среднемеловым ценотическим кризисом». Как только ни пересчитывали после него вымерших насекомых, все равно получалось, что сильнее всего фауна «шестиножек» менялась в меловом периоде: появилось множество новых форм, а темпы вымирания замедлились и насекомых становилось все больше и больше. (Побочным выводом из этих построений следует предсказуемая непредсказуемость нынешнего биоценотического кризиса, который, увы, не сводится к пресловутому «глобальному потеплению».)
Для обозначения некоторых явлений пришлось изобретать новые термины, порой довольно забавные. Видами Лазаря назвали формы, которые надолго исчезали из геологической летописи, а потом возникали вновь, как бы воскресали. Правда, оказалось, что во многих случаях это не те же виды, а их двойники – Элвис-виды (названные в честь традиционного конкурса двойников короля рок-н-ролла Элвиса Пресли). Ведь довольно просто устроенные скелетные губки и кораллы исчезают, а их место занимают бывшие мягкотелые, которые, пользуясь случаем, обзаводятся скелетом и вписываются в те же сообщества, приобретая форму своих предшественников. Некоторые наиболее прочные окаменелости, вроде зубов, могут превратить своих хозяев в зомби-виды, продлевая их посмертную жизнь на миллионы лет. Зубы вымываются из древних отложений и перезахораниваются в более молодых. Так, одна из палеонтологических страшилок, акула мегалодон (Otodus megalodon), вымерла более 3 млн лет назад, но «дело ее живет»: зубы гиганта встречаются в морских отложениях, которым несколько тысяч лет, будоража воображение обывателей – вдруг пойду я купаться на пруд, а зомби-мегалодон как укусит?! В большинстве случаев виды Лазаря, Элвиса и зомби появлялись после великих массовых вымираний – еще одного важного явления, открытого палеонтологами. С этими непростыми временами связан и «эффект лилипутов», когда на смену крупным видам в массовом количестве приходили измельчавшие родственники. Природа этого явления становится понятной, если всех посчитать, измерить и проанализировать изотопный и элементный состав отложений, вмещающих окаменелости: либо недостаток кислорода, что ограничивает темпы обмена веществ у многих животных, либо скудность пищевых ресурсов. Случалось и то и другое сразу. Рост при этом замедлялся, рано останавливался, и мы получали лилипутов. Могло быть и наоборот (ведь не будем мы обижать других героев Джонатана Свифта?), и тогда на смену мелким формам приходили великаны – «эффект бробдингнегов». (А теперь попробуйте произнести это слово вслух раз 30 подряд, как приходится делать во время научных докладов.) Бробдингнеги получаются из тех, кто способен расти медленно, но упорно: просто в битком набитом всякой быстро развивающейся живностью мире – до вымирания – им этого делать не давали конкуренты. Когда конкурентов нет, можно вымахать до размеров б… – в общем, «по это самое».