Константин Сергеевич Мережковский, современник Фаминцына и старший брат известного писателя и философа Д. С. Мережковского, отметил, что диатомовые водоросли тоже симбиотические существа, результат давнего слияния простейших и цианобактерий. Последние за время совместной эволюции превратились в фотосинтезирующие органы всех водорослей и растений – хлоропласты. (Ведь хлоропласты могут быть утеряны клетками диатомовых, но те продолжат существовать, питаясь уже подобно животным.) Кроме того, какие-то бактерии, по его мнению, стали предшественниками клеточного ядра. «Настоящая моя работа, – заявлял незаурядный биолог из Казанского университета в книге “Теория двух плазм как основа симбиогенезиса, нового учения о происхождении организмов” (1909), – и составит предварительное изложение новой теории происхождения организмов, которую, ввиду того что выдающуюся роль в ней играет явление симбиоза, я предлагаю назвать теорией симбиогенезиса»[37]. «Новое учение» – весьма смело, хотя вполне созвучно русскому Серебряному веку, населенному «покорителями литературы», «Председателями Земного шара» и просто «гениями». А «две плазмы» – это способная существовать без кислорода при высоких температурах и вырабатывать белок из неорганического вещества микоплазма и требующая органической пищи в насыщенных кислородом умеренных условиях амебоплазма. Понятно, что первая по времени появления должна была предшествовать второй, а следовательно, Земля прошла через этап развития, когда ее единственными обитателями были микробы.
В первой половине XX в. теорию симбиогенеза развивал ботаник Борис Михайлович Козо-Полянский в Воронежском университете. Он допускал, что не только хлоропласты и ядро (центр и сосредоточие всего), но и другие важные органеллы клетки – ее «силовые станции», митохондрии, и двигательный аппарат, ундулиподии (жгутики или реснички), суть пришельцы, когда-то бывшие самостоятельными организмами, т. е. клетка представляет собой сложный симбиотический организм! «Полет воображения Мережковского приводит его к допущению, что… зеленые растения возникли от симбиоза бесцветных ядросодержащих клеток и мельчайших синезеленых водорослей, из которых последние дали начало хлоропластам… Без сомнения, многим такие спекуляции могут показаться слишком фантастическими, чтобы о них можно было упоминать теперь в приличном обществе биологов…»[38] – откликнулся на труды основоположников теории симбиогенеза видный цитолог Эдмунд Уилсон, профессор Колумбийского университета. Лишь к концу 1960-х с появлением электронной микроскопии, позволившей биологам заглянуть в потаенные закоулки клетки, выяснилось, что русские биокосмогонисты оказались во многом правы.
Что же показали микроскопия и биохимия? Митохондрии и хлоропласты в отличие от прочих органелл отгорожены от цитоплазмы двойной мембраной. Эта усиленная конструкция отделяет их личный мир от остальной клетки, и в этом мире сохранилось уникальное наследственное вещество! Их собственная ДНК по-прежнему имеет больше общего с ДНК бактерий, чем с ДНК клеточного ядра, и потому генетики используют теперь для выяснения родства разных организмов не только ядерную – «свою» – ДНК, но и митохондриальную. Обе эти органеллы, кроме того, наследуются независимо от ядерного генома клетки, что заметил Козо-Полянский. К примеру, это может быть синхронное с ядром деление (зеленые водоросли); распределение среди дочерних клеток многочисленных бесцветных пропластид, из которых начинают развиваться хлоропласты (эвгленовые); обволакивание хлоропласта ядерной мембраной (бурые и золотистые водоросли). Существуют и разные механизмы сохранения митохондрий на последовательных стадиях жизненного цикла.
Главным возражением против теории симбиогенеза оставалось отсутствие случаев симбиоза между разными бактериями, поскольку строение их клеточных мембран (они не могут впячиваться) не позволяет одному микробу поглотить другого, чтобы тот остался цел и невредим. И если одному такому существу очень понравилось другое, оно его просто высосет. В новом тысячелетии выяснилось, что по крайней мере разнородные протеобактерии способны существовать одна внутри другой, делиться продуктами обмена веществ и даже обмениваться генами. А молекулярная биология поставила две жирные точки.
Во-первых, митохондрии – это не просто родственники неких бактерий, а прямые потомки альфа-протеобактерий, использующих кислород как акцептор электронов для ускорения процессов биосинтеза. Благодаря митохондриям и их способностям, более экономным путем происходит синтез аденозинтрифосфата (АТФ) – нашего главного внутреннего энергетического ресурса. Одна митохондрия производит пять молекул АТФ на каждую молекулу условной глюкозы, тогда как в результате ферментации таких молекул вырабатывается только две – четыре. А ведь митохондрий очень и очень много. В итоге масса АТФ, образовавшаяся за сутки в клетках, например, человека, достигает всей массы его тела и практически полностью расходуется.
За длительное, по меньшей мере 2 млрд лет, время сосуществования с хозяевами митохондрии передали значительную часть своего генного аппарата клеточному ядру, где кодируется свыше тысячи необходимых им белков. (За собой они оставили производство лишь 13 таких компонентов.) Поэтому в ядре оказались чужеродные гены все тех же альфа-протеобактерий, например те, что отвечают за белки, устойчивые к высоким температурам. Взамен эти органеллы вовлечены в синтез белков и жиров, необходимых для жизни клетки, а некоторые белки могут использоваться для запуска апоптоза (процесса естественного отмирания клеток, без которого немыслимо развитие многоклеточного организма). Природа не терпит узких специалистов…
Во-вторых, хлоропласты – это несомненные потомки свободно живущих цианобактерий. Сегодня известно, что эти цианобактерии были близкими родственниками одноклеточных шаровидных хроококков – обычных обитателей пресных и соленых вод, нередко вызывающих их «цветение». Хроококки улавливают в дневное время азот, для чего используют запасенные ночью полисахариды и крахмал (не многие другие цианобактерии на это способны). Обретение фотосимбионта оказалось выгодным вдвойне: сразу – и органические запасы, и азотистые «удобрения». Как и в случае с митохондрией, часть генетической информации новой органеллы была передана ядру, геном которого у растений почти на 20 % состоит из генов цианобактерии.
Что касается происхождения прочих органелл, то здесь пока можно поставить не точку, а лишь многоточие. Было ли когда-то и ядро самостоятельным организмом? Пока неизвестно: у него одна мембрана, к тому же пористая. Ничего похожего нет ни у архей, ни у бактерий. А может быть, в формировании ядра помогли вирусы? Двухцепочечный поксвирус (от англ. pox – оспа) облачен в мембрану, проницаемую для РНК и ДНК, – чем не предтеча пористой ядерной мембраны? У него есть и энзимы, характерные только для эукариот. Неясно и происхождение ундулиподий – двигательных органелл. Когда-то их предков пытались разглядеть среди спирохет – бактерий, которые относительно быстро перемещаются и легко внедряются в самые разные клетки (вызывая у людей сифилис, маниакально-депрессивные психозы и другие малоприятные последствия). Спирохеты, действуя синхронно, как гребцы на галере, способны, например, передвигать в кишечном тракте термита трихомонад. Однако эти бактерии отличаются от любых ундулиподий по биохимии и внутреннему устройству. Существует уже несколько десятков гипотез, объясняющих, как появилось клеточное ядро, цитоскелет и другие органеллы, которые не имеют прямых аналогов в мире бактерий. Какая из них ближе к истине?
Главными претендентами на роль гостеприимного хозяина, обеспечившего жилплощадью прокариот – будущих органелл, казались бактерии. Они обладают чертами эукариот, отсутствующими у архей: например, синтезируют определенные жиры и важные белки, из которых строится цитоскелет. Вообще их клетки много крупнее.
Правда, и археи имеют целый ряд особенностей, сближающих их с эукариотами. Гены, задействованные в важнейшем процессе – передаче генетической информации, – практически те же, что и у эукариот. Есть сходство в строении рибосом – производящих белки органелл. Наличествуют белки (актин и тубулин), без которых невозможно построить цитоскелет. Имеется даже набор особых рибосомных белков с сигнальной меткой, которая распознается ядром, пропускающим их на основании этой молекулярной «визы» через свою мембрану. А значит, важная задача перемещения белков в ядро была решена археями еще до появления ядра как такового.
Среди архей, согласно молекулярным данным, по ряду биохимических признаков наиболее подходят на роль клетки-хозяйки обитатели горячих и кислотных источников, а также метанобразующие формы. Именно те, кто мог существовать в условиях повышенных температур и отсутствия кислорода на Земле архейского времени. Вот только мелкие они очень (хотя встречаются и шестимикронные «гиганты»). Выходит, не годятся эти клетки в качестве гостеприимного пристанища для постояльцев с весьма разными потребностями – других микробов, не смогут они здесь прижиться и превратиться в органеллы.
Недавнее открытие новой большой группы архей, получивших общее имя асгардархеи, позволило не то чтобы решить эту проблему, но понять, насколько мало мы знакомы с необычным микромиром. Началось все с находки первых представителей этой группы в черных курильщиках (глубоководных горячих вулканических источниках) в Северной Атлантике. Из-за необычного рельефа, напоминающего развалины крепости, этот гидротермальный очаг назвали Замком Локи в честь одного из богов скандинавского пантеона. Так новые археи стали локиархеями. Родственные им прокариоты, чтобы легче запоминались, стали получать имена других небожителей, которым поклонялись викинги, – благих асов Одина, Тора, Хеймдалля. И где же им вместе быть, как не в Асгарде, божественном граде асов?
Самих асгардархей никто не видел: их присутствие и разнообразие выявляли с помощью метагеномики, анализируя геномный материал непосредственно из проб донных осадков. Этого оказалось достаточно, чтобы выяснить: у асгардархей есть важные гены и белки, ранее считавшиеся присущими исключительно эукариотам. Особенно интересны среди этих генов те, что отвечают за построение цитоскелета, подвижность клетки и ее мембраны, обеспечивая возможность активного захвата инородных тел, т. е. способ питания, почти недоступный прокариотам, но важный для эукариот.