а) управления разверткой;
б) регулятора по оси Z;
в) выбора синхронизации;
г) усиления по горизонтали;
д) усиления по вертикали.
6.Для проверки ротора на короткое замыкание часто используется:
а) ампервольтомметр;
б) VTVM;
в) мегомметр;
г) устройство проверки обмоток;
д) ничего из перечисленного.
7.Измерительный прибор для проверки сопротивления изоляции называется:
а) тестер транзисторов;
б) индикатор напряжения;
в) магнитометр;
г) мегомметр;
д) ничего из перечисленного.
8.Небольшой ручной пробник с генератором, который используется при отслеживании сигналов приемников, называется:
а) генератор звуковой частоты;
б) генератор радиочастоты;
в) генератор развертки;
г) генератор меток;
д) генератор шума.
9. Дополнительный пробник осциллографа, который используется для обнаружения сигнала, называется:
а) делитель напряжения;
б) пробник с низкой емкостью;
в) пробник звуковой частоты;
г) направленный пробник;
д) пробник с детектором.
10.Регулятор осциллографа, который позволяет использовать внешнюю или внутреннюю синхронизацию, это:
а) управление разверткой;
б) регулировка по оси Z;
в) фокус;
г) выбор синхронизации;
д) интенсивность.
1. Объясните разницу между ампервольтметром и прибором на основе полевых транзисторов.
2. Что такое цифровой мультиметр?
3. Расскажите о процедуре настройки осциллографа перед работой.
4. Объясните, как калибровать осциллограф.
5. Что такое пробник с низкой емкостью?
6. Что такое пробник с делителем напряжения?
7. Что такое пробник с демодуляцией или радиочастотный пробник?
8. Расскажите, для чего используется мегомметр.
9. Где используется генератор меток?
10. Что такое неоновый индикатор напряжения?
11. Расскажите о назначении оптического рефлектометра для наблюдения за формой сигнала.
12. Какая разница между логическим пробником и цифровым логическим импульсным пробником?
13. Расскажите о назначении анализатора схемы, спектра и формы сигналов.
14. Расскажите о функциях генератора ТВ/стереосигналов.
15. Для тестирования каких типов оборудования обычно используется высоковольтный пробник?
16. Расскажите о работе устройства проверки обмоток.
17. Расскажите о характеристиках амперметра для высоковольтных линий передачи.
18. Какие специальные требования предъявляет к осциллографу электромиограф?
19. Расскажите о применении и типах высоковольтных вольтметров.
20. Расскажите о типичных применениях тестовых ламп.
Глава 3Сервисное обслуживание двигателей и генераторов
Электрические двигатели принадлежат к числу наиболее широко используемых в бытовых, коммерческих и промышленных областях. Понимание основ их обслуживания дает возможность заниматься сервисом и другого оборудования.
После появления высоких технологий потребность в электрических двигателях возросла. Были разработаны новые конструкции энергосиловых машин и расширились их возможности.
Электрические генераторы также используются в различных направлениях: от оборудования до автомобильной промышленности. Хотя генератор во многом похож на двигатель, каждый из них имеет специфические особенности и задачи.
В этой главе дается обзор базовых принципов работы двигателей и генераторов, а также методы поиска неисправностей и ремонта.
Конструкция и теория работы электродвигателей во многом повторяет методы подхода и строение генераторов.
Двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую (рис. 3.1). Генератор делает прямо противоположное. Простой генератор постоянного тока можно превратить в электродвигатель, подключив аккумуляторную батарею к зажимам щеток.
Рис. 3.1. Упрощенная конструкция электрического двигателя
Ток подается к якорю от батареи и превращает его в электромагнит. Якорь имеет «северный» и «южный» полюса, расположенные рядом с одноименными полюсами магнита статора. В результате якорь начинает вращаться, поскольку крайние точки отталкиваются друг от друга, как показано на рис. 3.2.
Рис. 3.2.Вращательное действие упрощенного электродвигателя
Якорь продолжает вращаться, потому что коллектор постоянно меняет ориентацию его полюсов. Такой тип двигателя называется репульсионным. Для увеличения его эффективности на полюсах магнита и на якоре устанавливаются несколько катушек. Это повышает мощность двигателя и делает его работу более равномерной.
Типичный электродвигатель состоит из якоря, обмотки возбуждения, торцевых пластин, подшипников, корпуса, щетки, выключателя и основания (рис. 3.3).
Рис. 3.3.Основные детали электродвигателя
Большинство из них, несмотря на различия по конструкции и характеру работы, содержат статор (внешняя часть из электрических обмоток двигателя), ротор и торцевые крышки (или торцевые пластины).
Статор обычно изготавливается из множества стальных пластин. Этот набор с оксидным покрытием сваривается в оболочке статора, что уменьшает вихревые токи и нагрев сердечника во время работы двигателя.
Проволочные обмотки состоят из большого количества витков. Важно, чтобы каждая катушка была тщательно собрана, иначе вся обмотка может оказаться закороченной, мотор перегреется и прекратит работу.
Фазные роторы постоянного тока и индукционные роторы переменного тока. Фазный ротор постоянного тока имеет коллектор и используется также для универсальных двигателей переменного тока. Как и статор, имеет многослойную металлическую структуру с катушками из провода и лаковой изоляцией. Индукционные роторы не имеют проволочных обмоток или коллектора.
Ротор переменного тока состоит из нескольких металлических слоев с алюминиевыми, медными и/или стальными стержнями. Эта конструкция обеспечивает индуктивность с малым выделением тепла. Иногда для уменьшения нагрева на валу ротора устанавливаются лопасти, играющие роль вентиляторов. Роторы собираются так, чтобы пазы располагались под углом для обеспечения более стабильной работы. Вращающаяся часть двигателя также балансируется с помощью грузов, прикрепляемых к лопастям вентилятора или валу.
Электродвигатели работают, в основном, по принципу отталкивания или индукции. Энергосиловые машины репульсионного типа, как вы уже знаете, используют отталкивание одинаковых магнитных полюсов. Магнитное поле полюса якоря противодействует полю неподвижных обмоток статора и заставляет якорь вращаться. Коллектор постоянно меняет полярность обмоток якоря, поэтому он не останавливается. Все двигатели постоянного тока и некоторые переменного работают по принципу отталкивания. Для этого им необходим якорь, коллектор и набор щеток.
Индукционные двигатели, как вы могли догадаться, работают по принципу электромагнитной индукции и почти все на переменном токе. Ротор индукционных двигателей, похожий на беличье колесо, обычно состоит из многослойного стального цилиндра и медных стержней, вставленных в прорези. Его называют короткозамкнутым ротором. Когда на обмотки статора подается переменный ток, в роторе вследствие явления электромагнитной индукции также возникает ток, который создает магнитное поле, чья полярность противоположна полярности ноля обмоток статора. Ротор не начнет вращаться сам по себе, поэтому большинство однофазных двигателей требуют стартовой обмотки и выключателя. Трехфазные двигатели не требуют выключателя для запуска поскольку каждая фаза смещена на 120°. Кроме того, индукционные двигателя не нуждаются для работы в якоре, коллекторе или наборе щеток.
Существует много типов и классов электродвигателей, каждый из которых обладает собственными характеристиками и возможностями. Современное развитие технологий увеличило производство двигателей с различными возможностями. Вот некоторые из наиболее распространенных машин:
♦ с расщепленными фазами;
♦ конденсаторные;
♦ с расщепленными полюсами;
♦ репульсионные;
♦ постоянного тока;
♦ синхронные;
♦ универсальные;
♦ многофазные;
♦ редукторные;
♦ шаговые.
Энергосиловая машина с расщепленными фазами представляет собой однофазный индукционный двигатель переменного тока, который обычно работает от сети 220 В, используя короткозамкнутый ротор (рис. 3.4). Работает по принципу индукции. Он устанавливается на многих приборах: моечных машинах, водяных насосах, рефрижераторах, вентиляторах. Мощность двигателя обычно находится в ряду от 0,05 до 0,5 лошадиной силы.
Рис. 3.4.Двигатель с расщепленными фазами
Двигатель с расщепленными фазами имеет две обмотки возбуждения — рабочую и пусковую. Он получил такое название, потому что пусковая обмотка сдвинута на 90° относительно основной рабочей (рис. 3.5).
Рис. 3.5.Пусковая и рабочая обмотки двигателя с расщепленными фазами
Пусковая или вспомогательная обмотка изготавливается из качественного изолированного медного провода и отвечает за запуск двигателя. Она обычно включена в схему только в течение долей секунды. Двигатель набирает примерно 75 % скорости, после чего центробежный выключатель отсоединяет пусковую обмотку от схемы. Дальнейшую работу ведет основная обмотка (рис. 3.6).