Поиск неисправностей в электронике — страница 14 из 72



Рис. 3.6.Сборка центробежного механизма центробежного выключателя


Неподвижная масть центробежного выключателя состоит из двух контактов, которые подключают и отключают пусковую обмотку (рис. 3.7).



Рис. 3.7.Неподвижная часть центробежного выключателя


Конденсаторные двигатели

Конденсаторные двигатели — однофазные машины переменного тока индукционного типа. По конструкции они почти идентичны двигателям с расщепленными фазами, но содержат один или более конденсаторов. Обычно их мощность находится в диапазоне от нескольких долей до 20 лошадиных сил (рис. 3.8).



Рис. 3.8.Конденсаторный двигатель


Конденсатор представляет собой устройство, хранящее электрический заряд, а также проводящее переменный ток. Его главная характеристика — емкость, которая измеряется в фарадах (Ф), микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ). Наиболее распространенные типы конденсаторов: бумажные и электролитические. Есть три основных типа конденсаторных двигателей; с конденсаторным запуском, с конденсаторным запуском и действием, с отдельными конденсаторами для пуска и рабочего режима.

Двигатели с конденсаторным запуском используют элемент цепи, который подключается последовательно с пусковой обмоткой (рис. 3.9). Когда машина включается, конденсатор заставляет ток из пусковой обмотки поступать в рабочую. Этот эффект вызывает ток в роторе, и он начинает вращаться.



Рис. 3.9.Внутренняя схема двигателя с конденсаторным запуском


В бесшумном, стабильно работающем двигателе с конденсаторным запуском и действием элемент цепи и пусковая обмотка остаются все время в составе схемы. Он часто используется в вентиляторах, рефрижераторах, кондиционерах, где необходим минимальный уровень шума.

Двигатель с отдельными конденсаторами для пуска и рабочего режима также очень тихо работает (рис. 3.10). Он использует два элемента электрической цепи различной емкости. Для пуска служит конденсатор большой емкости, а конденсатор с меньшей емкостью заменяет его после начала работы двигателя. Кроме того, конденсаторные двигатели такого типа часто используются в компрессорах, где нужен высокий вращающий момент при запуске и более чем одна скорость вращения.




Рис. 3.10.Внутренняя схема двигателя с отдельными конденсаторами для запуска и рабочего режима


Двигатели с расщепленными полюсами

Двигатель с расщепленными полюсами является, наверное, самым дешевым и обычно его мощность находится в диапазоне от 0,004 до 0,25 лошадиных сил (рис. 3.11).



Рис. 3.11.Двигатель с расщепленными полюсами


У двигателя с расщепленными полюсами очень малый стартовый вращающий момент. Он используется в таких приборах, как вентиляторы и фены, где наиболее важным является низкая стоимость и минимальные затраты на обслуживание.

Это простой однофазный индукционный двигатель с короткозамкнутым ротором, почти не требующий технического обслуживания. Его полюса выступают из многослойного цилиндра, поэтому их часто называют явно выраженными. Машины не используют пусковую обмотку, подобную самым простым однофазным индукционным двигателям. Они имеют короткозамкнутый виток из толстого медного провода, который выполняет роль пусковой обмотки (рис. 3.12).



Рис. 3.12.Экранирующее кольцо двигателя с расщепленными полюсами


Когда ток подается на двигатель, короткозамкнутый виток, называемый также экранирующим кольцом, создает магнитное поле, которое сдвинуто по фазе относительно поля обмотки возбуждения. Магнитное поле вызывает ток в роторе, и тот начинает вращаться. После того, как достигнута необходимая скорость вращения, вступает в действие обмотка возбуждения и продолжает вращаться (рис. 3.13).



Рис. 3.13.Рабочая и пусковая обмотки двигателя с расщепленными полюсами


Двигатели репульсионного типа

Можно выделить два основных типа двигателей:

♦ репульсионные;

♦ с репульсионным пуском и индукционным действием.

Как вы, наверное, помните, репульсионный двигатель имеет якорь, коллектор и набор щеток. Работает по принципу отталкивания одноименных полюсов. Он очень похож на коллекторные двигатели постоянного тока и его мощность находится в пределах 0,5-10 лошадиных сил, имеет отличный стартовый вращающий момент и регулируемую скорость. Он обычно используется в компрессорах, кондиционерах, насосах. Скорость репульсионного двигателя можно менять за счет смещения держателя щеток. Это приводит к тому, что щетки сдвигаются ближе или дальше по отношению друг к другу. Таким образом можно управлять скоростью двигателя. Машины запускаются по принципу репульсии. Когда ротор начинает вращаться, он продолжает работать как индукционный двигатель. Щетки и коллектор используются только во время запуска. Когда двигатель стартовал, удаление щеток не повлияет на характеристики его работы. В других типах этих двигателей с помощью центробежного выключателя производится отвод щеток от поверхности коллектора после запуска. Эти машины имеют более сложную конструкцию, однако уменьшают износ щеток.


Двигатели постоянного тока

Двигатели постоянного тока имеют мощности в диапазоне от долей до нескольких тысяч лошадиных сил. Они широко используются в подъемниках, где необходим пусковой вращающий момент и регулирование скорости.

Существуют три типа двигателей постоянного тока: с последовательным, параллельным и смешанным возбуждением. Основная разница между ними заключается в соединениях между возбуждающей обмоткой и якорем.

В двигателях с последовательным возбуждением якорь и обмотки соединены последовательно, поэтому он может запускаться даже при очень большой нагрузке, изменяя скорость в соответствии с величиной нагрузки. Данный тип устройств обычно используется в стартерах автомобилей, кранов и подъемных устройств, где при малой скорости необходим очень большой вращающий момент (рис. 3.14).



Рис. 3.14.Упрощенная схема двигателя с последовательным возбуждением


В электродвигателе параллельного возбуждения якорь и возбуждающие обмотки соединены параллельно. Двигатель поддерживает постоянную скорость при изменяющейся нагрузке, но его пусковой вращающий момент меньше, чем у энергосиловой машины с последовательным возбуждением (рис. 3.15). Такие двигатели обычно используются в насосах и подъемниках, где необходима постоянная скорость при изменяющейся нагрузке.



Рис. 3.15.Упрощенная схема двигателя с параллельным возбуждением


Якорь и обмотки в двигателях со смешанным возбуждением или последовательно-параллельных двигателях соединены в виде комбинированной схемы последовательно и параллельно (рис. 3.16).



Рис. 3.16.Упрощенная схема двигателя со смешанным возбуждением


Как и следует ожидать, двигатели со смешанным возбуждением имеют свойства двигателей с последовательным и параллельным возбуждением. Они обладают неплохим вращающим моментом и хорошей регулировкой скорости. Используются на предприятиях в приводах крупногабаритного оборудования, где необходим хороший пусковой и опрокидывающий момент.


Универсальные электродвигатели

Универсальные двигатели могут работать на постоянном или на переменном токе. Обычно они имеют мощность в доли л.с. Универсальный двигатель представляет собой устройство с последовательным возбуждением. У него очень хороший пусковой вращающий момент и переменная скорость. Такие двигатели, в основном, используются в пылесосах, швейных машинах, бытовых миксерах, вентиляторах, фенах и другой бытовой технике (рис. 3.17).



Рис. 3.17. Упрощенная схема универсального двигателя с последовательным возбуждением


Многополюсные двигатели

Наиболее популярный сегодня многополюсный двигатель-трехфазный индукционный переменного тока с мощностью от долей л.с. до нескольких тысяч л.с. (рис. 3.18). Большинство трехфазных двигателей используются в промышленности. Мощность таких устройств от — 10 до 100 л.с.




Рис. 3.18.Трехфазный двигатель


Трехфазные двигатели не требуют серьезного технического обслуживания и ремонта и имеют очень простую конструкцию: содержат несколько катушек, которые распределены между несколькими обмотками, называемыми фазами. Каждая фаза имеет одинаковое число катушек. Три группы катушек, или фазы, соединены звездой или треугольником (рис. 3.19).



Рис. 3.19.Упрощенная схема соединения фаз двигателя звездой и треугольником


Когда трехфазный ток подастся на обмотки статора, внутри металлических стержней короткозамкнутой обмотки создается вращающееся магнитное поле, которое заставляет ротор вращаться. Трехфазный ток, продолжающий проходить через обмотки статора, смещенные относительно друг друга на 120°, поддерживает вращение ротора за счет индукции. Трехфазные двигатели имеют различный вращающий момент, скорость, величину и корпус. Способы их применения очень разнообразны. Обычно они используются в приводах промышленного оборудования.


Синхронные двигатели

Синхронные машины представляют собой индукционные двигатели, работающие с постоянной синхронной скоростью, которая определяется частотой источника питания и количеством полюсов. Они имеют самую разную форму, размер способы применения. Обладают мощностью от долей л.с. для малогабаритных часов и до 3000 л.с. для сталепрокатных станов.

Синхронные двигатели могут работать только на переменном токе. Их скорость постоянна и не меняется в некоторых пределах при увеличении/уменьшении нагрузки. Основной принцип работы заключается в том, что ротор с выступающими полюсами вращается вместе с магнитным полем. Ротор «сцепляется» с полем и остается в постоянном, непрерывном движении. Некоторые из них запускаются постоянным током. Возбуждение ротора создает определенные полюса, которые связаны с вращающимся магнитным полем. Часто такой тип двигателя снабжен небольшим генератором постоянного