Поиск неисправностей в электронике — страница 38 из 72

Распространенной ошибкой при поиске неисправностей экспериментальных схем является использование светодиода для определения логического уровня выхода. Светодиод на рис. 7.14 (который будет потреблять ток 5-10 мА) перегружает выход схемы, к которой он подключен.



Рис. 7.14.Перегрузка выхода прибора ТТЛ при использовании светодиода для тестирования


Он уменьшит выходное напряжения до уровня менее 2 В, что может быть не признано в качестве высокого уровня следующей микросхемой. Правильный способ проведения такого теста будет показан дальше в этой главе.

Для того чтобы принимать разумные решения при поиске неисправностей, важно также понимать устройство электрической схемы, которая помещена в корпус ИМС. Большинство приборов ТТЛ имеют одинаковую базовую выходную схему. На рис. 7.15 показана схема, которая называется выходным двухтранзисторным каскодом.



Рис. 7.15.Схема выходного двутранзисторного каскода ТТЛ


 Каскóд — тип схемы, образованной последовательным соединением двух транзисторов, причем эмиттер верхнего транзистора соединен с коллектором нижнего. Но в каскоде транзисторы, как правило, работают в активном, а не в ключевом режиме, поэтому выходной каскад ТТЛ проще считать противофазно работающими ключами.


Двухтранзисторный каскод образован R4, Q3, D2, Q4. Его задача заключается в том, чтобы переключить напряжение 5 В на выход при высоком уровне выходного сигнала (с использованием R4, Q3, D2), и соединить вход с землей 0 В при низком уровне выходного сигнала (с использованием Q4). Обратите внимание на различия между двумя переключающими цепями. Когда выход низкий, включается Q4 и его коллектор имеет напряжение очень близкое к земле (Vce(sat) = 0). Это образует очень результативный и эффектный переключатель.

С другой стороны, верхняя часть двутранзисторного каскода должна подавать ток от источника питания для обеспечения высокого логического уровня. Этот ток должен пройти через R4, Q3, D2 прежде, чем он попадет на выходной вывод и нагрузку. Поскольку на диоде падение напряжения составляет 0,7 В, на резисторе R4 также присутствует напряжение, пропорциональное току нагрузки, то выходное напряжение определенно не станет близко к 5 В. В действительности выход ТТЛ обычно меньше 4 В, а часто даже меньше, чем 3,5 В, даже при минимальной нагрузке.

Поэтому очевидно, что каскад гораздо лучше пропускает ток от нагрузки на землю, чем ток от источника с Vcc на нагрузку. Каскадный выход ТТЛ лучше выполняет отвод тока, поскольку схема переключения, контролирующая соединение выхода с землей, более эффективна, чем переключатель на Vcc.

Важное значение имеет также природа входных сигналов ТТЛ. Когда на вход подается низкий уровень, ток течет от Vcc через R1, через бузу Q1 на эмиттер и затем из входа. Когда используется положительная логика, тока почти нет. Вход ТТЛ является гораздо большей нагрузкой для источника выходного сигнала с низким выходом, чем для источника с высоким выходом. Это объясняет также, почему вход схемы ТТЛ, в которой произошел обрыв, работает так, как будто на него был подан сигнал высокого уровня.

Есть также два других типа выходных цепей, которые используются в некоторых приборах ТТЛ. Они называются схемами с выходным транзистором с открытым коллектором и схемами с выходом с тремя состояниями.

Схема с открытым коллектором показана на рис. 7.16. Заметьте, что в ней нет верхней части двухтранзисторного выходного каскода.



Рис. 7.16. Схема ТТЛ с выходным транзистором с открытым коллектором


Этот тип востребован, когда пытаются использовать схему ТТЛ для работы с прибором, который не рассчитан на 5 В, как показано на рис. 7.17.



Рис. 7.17. Работа с нагрузкой, требующей высокого напряжения


Выход таких приборов не может дать напряжение, даже когда логический уровень высок. Часто вместо верхней части каскадного выхода с этими приборами используется внешний резистор, подключенный к цепи питания, который должен обеспечить высокий уровень сигнала.

Можно соединить вместе выходы нескольких схем с открытым коллектором, как показано на рис. 7.18.



Рис. 7.18.«Монтажное И» с шестью входами на основе использования схем с открытым коллектором


Поскольку ни одна их них не выдает высокого выходного уровня напряжения, не возникает соединений между уровнями высокий и низкий, как имело бы место при использовании каскадного выхода. Единственный способ сделать выход высоким, заключается в том, чтобы сделать высоким уровень всех схем. Поэтому такое подключение называется «Монтажное И».

Выходы ТТЛ с тремя состояниями могут отключать одновременно и верхнюю, и нижнюю часть двутстранзисторного каскодного выхода с помощью воздействия на управляющий вход кристалла. Это переводит выход в состояние «высокого импеданса», которое используется, когда несколько выходов разделяют одну линию соединения. В главе 9 эта концепция рассмотрена более подробно.


КМОП

Вскоре после появления ТГЛ была разработана новая технология, в которой использовался другой тип транзистора, не такой, как в схемах ТТЛ. Металл оксид-полупроводниковые полевые транзисторы MOSFET (полевые МОП-транзисторы) имеют 3 вывода, которые называются сток, исток и затвор и соответствуют коллектору, эмиттеру и базе биполярного транзистора.

Эти транзисторы имеют очень высокое входное сопротивление между затвором и двумя другими выводами. Когда такие транзисторы используются для построения логических схем с помощью комбинирования дополнительных пар транзисторов, результирующие логические схемы называют комплементарными металл-оксид-полупроводниковыми CMOS (КМОП).

В 1970–1980 годах схемы КМОП считались приборами с низким потреблением и недостаточным быстродействием. Однако технология улучшилась до такой степени, что КМОП-логика стала не менее быстродействующей, чем большинство серий ТТЛ при значительной экономии мощности. Поэтому большинство новых логических приборов выполняются именно на основе схем КМОП.

Благодаря высокому входному сопротивлению затворов вход схем КМОП почти не потребляет ток от предыдущей схемы. Термин комплементарный означает, что в каждом приборе КМОП два типа транзисторов — полевые МОП-транзисторы n-типа и полевые МОП-транзисторы р-типа.

Первые переключаются (при этом происходит замыкание стока на исток) при подаче положительного напряжения на затвор. Транзисторы p-типа переключаются, когда на затвор подается 0 В. Схемы потребляют очень малый ток от источника питания вследствие комплементарной природы цепей, как показано на рис. 7.19. Заметьте, что не возникает завершенного пути для тока от Vdd до Vss. Выход замыкается на Vdd при высоком уровне и замыкается на Vss при низком.



Рис. 7.19.Схема ИЛИ-HE технологии КМОП


Полевые КМОП-транзисторы, имеют большее по сравнению с биполярными транзисторами сопротивление сток-исток во включенном состоянии в десятки и даже сотни Ом.

Если через полевые КМОП-транзисторы течет слишком большой ток, выходное напряжение рискует превысить допустимый уровень, тогда рассеиваемая мощность разрушит транзистор. Если через выход течет слишком малый ток, напряжение на выходе будет очень близким к величине Vdd или Vss. Характеристики и методы тестирования таких транзисторов описаны в главе 1.

Первым семейством приборов КМОП, которые получили широкое распространение, были ИМС общего назначения серии 4000. Несколько изготовителей выпускают схемы с такими номерами. Некоторые компоненты выпускает фирма Motorola, но ее номера деталей начинаются на 1, поэтому микросхема из 4 двухвходовых схем И-НЕ 4011 будет обозначаться 14011.

Эти микросхемы имеют преимущество, заключающееся в широком диапазоне напряжений питания в пределах от 3 до 18 В. Логический уровень ВЫСОКИЙ опознается схемой КМОП при любой величине, большей 2/3 Vdd.

НИЗКИМ уровнем считается сигнал со значением менее 1/3 Vdd. Обратите внимание, что если на Vdd подается напряжение питания 5 В, а V — земля, то допустимыми входными сигналами будут 0–1,7 В для уровня НИЗКИЙ и 3,33-5,0 В для уровня ВЫСОКИЙ. Эти определения логических уровней не полностью совместимы с выходными сигналами ТТЛ, поэтому для правильного их различения при совместном использования ТТЛ и КМОП приборов необходимо дополнительное оборудование.

Если схема КМОП должна запускаться выходными сигналами ТТЛ, то обычно принимаются определенные меры предосторожности. Главная проблема заключается в том. что ТТЛ гарантирует только, что ее выход 2.4 В соответствует логическому уровню ВЫСОКИЙ. Вход КМОП требует по меньшей мере 3,3 В для того, чтобы воспринять поступающий сигнал как высокий. Чтобы получить с ТТЛ большее напряжение для логического уровня высокий, часто на выход схемы устанавливается повышающий резистор, как показано на рис. 7.20.




Рис. 7.20. Подключение прибора ТТЛ к прибору КМОП


Если ТТЛ подключается с КМОП, работающей от источника питания более 5 В, то для передачи логических уровней необходимы более сложные схемы.

Популярность ИМС ТТЛ и преимущества низкого энергопотребления КМОП были совмещены в серии 74С КМОП. Эти детали идентичны с точки зрения соответствия выводов деталям ТТЛ с тем же номером. Однако их внутренняя схема использует КМОП и имеет входные и выходные спецификации КМОП. Они также работают медленнее, чем приборы ТТЛ.

Серия 74НС предоставляет более быстродействующие детали КМОП, которые конкурируют со стандартными ТТЛ по скорости, но в то же время имеют характеристики КМОП. Эти детали можно считать имеющими интерфейс непосредственно с ТТЛ, поскольку у них иное определение уровня логических сигналов и другие характеристики выходных токов. Серия 74НСТ содержит устройства, заменяющие ТТ. Они изготовлены с помощью технологии КМОП, но обеспечивают логику, совместимую с ТТЛ по входам и выходам. Рассеиваемая мощность 74НСТ не так мала, как у 74НС, но значительно выше, чем у пр