Поиск неисправностей в электронике — страница 48 из 72


Сервисное обслуживание триггерных схем

Выпускается множество ИМС для построения счетчиков, регистров и регистров сдвига. Все эти схемы используют триггеры. При поиске неисправностей сначала определите, получает ли схема правильные синхроимпульсы. Убедитесь в том, что асинхронные выходы (установка, сброс, загрузка), которые не зависят от синхросигналов, не активируются постоянным несоответствующим или ложным сигналом. Для этой цели хорошо подходит импульсная функция логического пробника. Если хотя бы один разряд не работает, следует определить, исправна ли запускающая схема и нет ли на входе загрузки постоянного высокого или низкого уровня.

Для определения правильности работы схемы с памятью необходимо установить должную последовательность состояний. Если она не указана в сервисном руководстве, прилагаемом к прибору, специалисту нужно проанализировать триггерную схему, чтобы предсказать эту последовательность. Можно построить таблицу соответствия текущего и следующего состояния, в которой будут отображены все возможные комбинации состояний на всех выходах. В схемах с памятью выходы обычно логически комбинируются с другими логическими сигналами и подаются на входы триггеров. Оценивая комбинационную логику, можно определить текущие состояния входов каждого триггера. Если это известно, всегда можно предсказать следующее состояние (рис. 8.17).



Рис. 8.17.Чертеж и таблица для анализа схемы привода шагового двигателя


Специалист может использовать подобную таблицу для определения правильности сигналов на входе, сравнивая данные с результатами своих измерений. Если они отличаются, то неисправна комбинационная схема. Когда результаты измерений соответствуют таблице, то может быть неисправна триггерная схема.

Логический пробник поможет определить, что данный выход ИС вообще не изменяется. Но как узнать, происходит ли это из-за неисправности в данной ИС, или же из-за того, что не подаются надлежащие входные сигналы? Выход может зависеть от одновременного состояния четырех или более входов. Если состояния входов меняются быстро, для оценки их работоспособности обычно необходимо специальное тестовое оборудование. Логический анализатор является прекрасным средством отображения реальных временных соотношений в логической схеме. К сожалению, установка и подключение логического анализатора требуют много времени, и он не всегда доступен вследствие высокой стоимости. Многоканальные осциллографы также очень полезны, но обычно ограничиваются отслеживанием четырех сигналов и имеют недостаточное количество условий запуска.


Формы цифровых сигналов

Во многих учебниках и справочных пособиях по цифровой технике логические сигналы изображаются в виде идеальных прямоугольных импульсов с красивыми ровными уровнями и мгновенным фронтом. Высокие и низкие уровни реальных импульсов очень часто испытывают воздействие и других сигналов (рис. 8.18).



Рис. 8.18.Пример формы цифрового сигнала


Физически невозможно мгновенно изменить уровень сигнала с 0 до 5 В. Для этого требуется бесконечно большая мощность. Время, затрачиваемое для перехода от одного уровня к другому, зависит от прибора, который генерирует импульсы, и от реакции (в основном, емкостной) нагрузочной схемы. Количество «мусора», или паразитных колебаний, которое будет наблюдаться на уровнях сигнала, зависит от быстродействия схемы и близости прохождения других сигналов. До тех пор, пока импульсные помехи не превысят логические уровни, схема будет работать хорошо.

Имейте также в виду, что с помощью осциллографа для наблюдения форм непериодического сигнала, вы не сможете получить статичную картинку. Другой важный момент касается источника запуска осциллографа. Если для запуска используется младший бит, это может вызвать расплывчатое изображение или стабильное, но некорректное изображение формы сигнала.


Пример сервисного обслуживания последовательной цифровой схемы

Мы рассмотрим типичный прибор — высокоскоростное устройство тиражирования аудиозаписей на магнитной ленте, изготовленное фирмой Telex Communications Inc., похож на другие цифровые схемы и может послужить примером методики сервисного обслуживания цифровых систем.

Прежде всего необходимо понять, каковы критерии нормальной работы прибора. Руководство пользователя часто дает всю необходимую информацию К счастью, фирма Telex предлагает технические инструкции по очень разумной цене.

Этот раздел даст вам представление о том, какая информация содержится в техническом руководстве. Мы также увидим, как цифровые схемы работают вместе в небольшой системе и научимся тому, что необходимо сделать для локализации неисправности в схеме.

 Следующие два абзаца взяты из первой части руководства фирмы Telex, чтобы познакомить вас с прибором.


Copyette (TM) 1 &3 Telex представляет собой двуканальное двудорожечное монофоническое устройство тиражирования аудиозаписей на магнитной ленте, выполненное не базе полупроводниковых электронных приборов, размещенных на съемной модульной плате из стеклотекстолита. Это легкий, переносной настольный прибор, предназначенный для высокоскоростного копирования. Устройство может выполнять три копии с оригинала. Copyette 1&3 дублирует кассеты С-60 с длительностью записи на каждой стороне 30 мин за один проход менее чем за две минуты. Запуск осуществляется нажатием на кнопку Cycle.

Лентопротяжный механизм, который питается от сети переменного тока и потребляет не более 60 Вт, содержит два двигателя и приспособление для верхней загрузки кассет, расположенных в прочном пластмассовом корпусе. Перемещение ленты обеспечивается двигателем постоянного тока с электронным управлением. Нажатие кнопки Cycle подает питание на все четыре лентопротяжных устройства одновременно. На лентопротяжном механизме ORIGINAL воспроизводится кассета, а другие осуществляют запись на свободные магнитные ленты. Операция продолжается до тех пор, пока на приспособлении ORIGINAL не будет обнаружен конец ленты, после чего лентопротяжный механизм останавливается. После чего Copyette 1&3 переходит в режим ожидания».

Отметим, что в рабочем цикле устройства 4 состояния:

1. Ожидание.

2. Начальная перемотка перед копированием.

3. Копирование.

4. Перемотка всех четырех лент.

Следующий раздел сервисного руководства называется «Теория работы». Он описывает схемы, электропитания, звуковые усилители, предусилители воспроизведения, систему управления двигателем и схемы управления протяжкой ленты. Поскольку эта глава касается поиска неисправностей в цифровых схемах, мы рассмотрим только последние схемы. При чтении раздела о теории работы схемы, необходимо обратится к изображениям (рис. 8.19).






1. Емкость всех конденсаторов приведена в микрофарадах, если не указано иначе.

2. Сопротивление резисторов указано в Омах, рассеиваемая мощность 0.25 Вт ± 5 %. если не указано иначе.

3. Все напряжения — это напряжения постоянного тока, измеренные с помощью вольтметра с высоким импедансом относительно земли.

4. Все напряжения типовые и могут незначительно отличаться вследствие допусков элементов схемы.

5. СМ — двигатель вращения вала, РМ — двигатель позиционирования.

6. Эта схема может изменяться при модернизации устройства.


Рис. 8.19.Схема цепей устройства Copyette 1&3


 «Все режимы работы Copyette 1 &3 задаются счетчиком и соответствующей логикой дешифратора. Счетчик U2 (4013) представляет собой сдвоенный D-триггер. Этот счетчик с делением на 2 может выдавать четыре различных двоичных состояния (соответствующие четырем состояниям процесса копирования). Когда на Copyette 1&3 подается питание, логические схемы переходят в состояние ожидания (U4A и сопутствующими компонентами). Интерфейс Copyette 1&3 позволяет при нажатии кнопки переходить сразу к следующему циклу, независимо от текущего состояния. Кроме того, для схемы позиционирования головки необходима определенная логика. При включении питания устройство проверяет положение головки, чтобы определить, в каком режиме находится механика (с помощью оптических датчиков положения ED5 и ED6). Для соответствия требованиям режима ожидания прижимной ролик и скоба головки должны быть отведены назад. Соответствующий датчик ED5 формирует сигнал выключения (логический уровень низкий на Р7-5.

Каждый накопитель снабжен схемой регистрации конца ленты, которая состоит из оптрона инфракрасного излучения с открытым каналом IR. Отражающий элемент прикреплен к валу, схема формирования сигнала окончания ленты состоит из двух элементов И-НЕ (часть U5, U6) и RC элемента задания постоянной времени (C4-R15, C5-R18, C8-R22, C9-R25). Отражающий элемент расположен не вокруг всего вала, поэтому отражение любого падающего света во время вращения прерывистое. Каждая оптоэлектронная пара IR настроена так, чтобы отражать и принимать излучение во время вращения вала. Рабочие напряжения и формы сигналов приведены на рис. 8.20.

Выход всех четырех схем EOT подается через входные диоды (CR3, 4, 7, 8), катоды которых соединены вместе. Любой переход уровня высокий-низкий на катодах диодов оказывает такое же воздействие, как нажатие кнопки Cycle: устройство переходит к следующей операции. Например, если машина находится в состоянии перемотки перед копированием, переход ВЫСОКИЙ-НИЗКИЙ на линии означает, что во всех накопителях перемотка закончилась и можно начинать копирование. Однако можно заметить, что когда устройство находится в режиме копирования, следующая операция (перемотка после копирования) начинается, когда прекращает движение лента в накопителе ORIGINAL, даже если одна или более лент, на которые производится копирование, все еще движется. В режиме копирования схема обнаружения конца ленты для всех накопителей отключается высоким логическим уровнем на выводе 4U4. Причина заключается в том, что просто нет необходимости продолжать копирование».