ых сокращений ускоряется и замедляется нервной системой.
Мышечный орган делится на две половины, левую и правую, каждая их которых состоит из двух камер: верхней (предсердие) и нижней (желудочек). Задача предсердия — принимать из вен возвращающуюся из тела и легких кровь и подавать ее в желудочки — основные камеры насоса. Желудочки заставляют кровь идти в артерии для подачи в разные органы и легкие. Каждый удар сердца начинается в локальном нервном центре, который расположен в правом предсердии и называется синусно-предсердный узел. Синусно-предсердный узел изменяет ионный баланс вокруг, который можно измерить по изменению электрического напряжения. Этот маленький импульс заставляет соседние мышечные клетки сокращаться или деполяризовываться. Происходит цепная реакция, которая в результате дает волну сжатия мышцы, распространяющуюся вокруг и вниз по мышце предсердия. Это движение заставляет кровь идти через клапан в желудочки. Волна сжатия прекращается на уровне ткани, которая разделяет предсердие от желудочков. Импульс от синусно-предсердного узла передается также в атриовентрикулярный узел, который создает временную задержку, чтобы позволить предсердию завершить сжатие. После этой короткой задержки атриовентрикулярный узел выдаст импульс, передающийся но нервным волокнам в пучок Гиса, расположенный в нижней части внутренней стенки желудочков. Это создает волну мышечного сжатия изнутри наружу и снизу вверх в нижних камерах, которое выдавливает кровь в артерии.
Ионная активность мышечных клеток, связанная со сжатием и расслаблением, распространяется по всему телу и может быть измерена с помощью преобразования биологического (ионного) потенциала в электрический потенциал с помощью электродов. Электроды представляют собой небольшие металлические диски из серебра и хлорида серебра, см. рис. 10.5.
Рис. 10.5. Электроды ЭКГ
Они устанавливаются на адгезивный диск. Пропитанная электролитическим гелем губка создает контакт электрода с кожей, на котором всегда генерируется небольшой потенциал. Комбинация материала электрода и ионов тела работает как гальванический элемент. По мере того как ионы приходят и уходят вследствие сердечной активности, соответствующим образом меняется и напряжение на электродах. Это создает электрический сигнал, показывающий активность сердца. Получаемые формы сигналов называются электрокардиограммами (ЭКГ).
Электрокардиографы
Электрокардиограф представляет собой прибор, который записывает изменяющиеся во времени формы сигналов, отражающих работу сердца (рис. 10.6).
Рис. 10.6.Определения сигналов ЭКГ
Волна Р покалывает сжатие предсердия после запуска атриовентрикулярным узлом. Волны Q. R, S являются комбинированным результатом расслабления предсердия и сжатия желудочков. Волна Т является результатом расслабления желудочков. Измеряя высоту (амплитуду напряжения) и время между событиями, врач может узнать очень много об электрических показателях работы сердца. Для получения полной картины активности сердца, врач должен рассмотреть ее с нескольких точек зрения. Диагностическая ЭКГ дает 12 различных форм, каждая из которых представляет различные точки зрения или.
К пациенту присоединяются десять электродов. Три подключаются к верхней части правой половины груди (RA), к верхней части левой половины груди (LA) и нижней части живота (LL). Эти положения электродов часто называют правая рука, левая рука и левая нога, поскольку ранние варианты получения ЭКГ требовали ведер с соленой водой вместо небольших адгезивных электродов. Три электрода образуют треугольник вокруг сердца, создавая три угла наблюдения электрической активности. Вывод I идет от правой руки к левой руке, вывод II от правой руки к левой ноге, а вывод III от левой руки к левой ноге, как показано на рис. 10.7.
Рис. 10.7.Треугольник Эйнтховена для электрических измерений
Три других модели сердца формируются с помощью измерения сигнала электрода на одной конечности относительно среднего значения двух других. Они называются AVR, AVL, AVF. Еще шесть электродов (V1-V6) располагаются по дуге на левой стороне грудной клетки. Каждый из этих выводов дает значение относительно среднего значения трех электродов конечностей. Десятый электрод прикрепляется в правой части живота (правая нога) для улучшения отношения сигнал/шум. Электрически каждый усилитель ЭКГ имеет только два входа, которые измеряют потенциал между двумя электродами. Диагностический ЭКГ имеет три таких усилителя и схему автоматического переключения для подключения усилителей к соответствующим электродам, установленным на пациенте.
На рис. 10.8 показаны сигналы для полной диагностики с помощью ЭКГ с 12 выводами.
Рис. 10.8. ЭКГ
Вертикальная шкала имеет масштаб 0.5 мВ на большое деление. Обратите внимание на калибровочный импульс 1 мВ слева. Комбинация из трех выводов записывается одновременно, и машина автоматически переключается на другие наборы выводов каждые 2,5 с. ЭКГ делится на четыре секции с результатами для трех проводов в каждой. В ходе теста выбираются три провода, которые задают ритм, они показаны в нижней части диаграммы. Современные аппараты ЭКГ выполняют автоматически целый набор измерений и вычислений, а также предлагают врачу диагноз, который он может принять или отвергнуть. Это можно видеть в верхней части диаграммы. Одноканальные ЭКГ мониторы используются для постоянного наблюдения пациентов в критическом состоянии. Эти приборы используют только электроды на конечностях. В типичном трехпроводном мониторе набор входных переключателей выбирает, какие два электрода измеряются. Усиленный сигнал ЭКГ оцифровывается и хранится в памяти, содержащей информацию за 5-10 с.
Формы выходных сигналов выводятся на экран ЭЛТ. Если медицинский персонал замечает аномалию, то по нажатию кнопке Record происходит запись этой информации, прежде чем она покинет экран. После этого данные распечатывается на бумажном носителе.
Поскольку эти биопотенциалы очень малы по сравнению с величиной электрического шума, который присутствует в современной окружающей среде, мониторы ЭКГ требуют специальных усилительных схем, которые называются дифференциальными усилителями. Дифференциальный усилитель производит измерения разности напряжений между двумя точками, не связанными с землей. Один вход дифференциального усилителя инвертируется, другой — нет. Эти два сигнала складываются. Любой сигнал, который присутствует на обоих входах, в частности, сигналы шума, возникшего в проводах, исчезают. Это называется синфазным сигналом. Любая разница между двумя электродами усиливается, обычно с коэффициентом 1000. Это называется дифференциальным усилением. Соотношение между дифференциальным усилением и синфазным усилением называется коэффициентом ослабления синфазного сигнала КООС (CMMR). Хороший аппарат для ЭКГ должен иметь этот коэффициент 100 000 или более, для того чтобы избавиться от шума и усилить сигнал.
Поскольку электроды подключаются непосредственно к коже пациента иногда на несколько дней подряд, не должно быть ни малейшего шанса, что ток пойдет от аппарата ЭКГ в пациента или из пациента в аппарат. Следовательно, все схемы усилителей ЭКГ должны быть полностью изолированы от земли, как показано на рис. 10.9.
Рис. 10.9.Изоляция приемной и передающей стороны ЭКГ
Источник питания для дифференциального усилителя обычно изолируется трансформатором с низкой утечкой или преобразователем постоянного тока в постоянный ток для обеспечения отсутствия связи с землей шасси. Когда сигнал усиливается до уровня около 1 В, он проходит в другие части схемы через каскады гальванической развязки, обеспечивающие определенную форму изоляции. Обычно сигнал модулируется в сигнал более высокой частоты и проходит через трансформатор или оптический блок сопряжения для демодуляции на стороне с заземлением. Для диагностики ЭКГ полосовой фильтр устанавливает верхнюю точку спада на 100 Гц и нижнюю точку спада на 0,05 Гц. Для целей мониторинга верхняя частота устанавливается обычно 50 Гц для предотвращения влияния основного источника помех (электросеть), а нижняя частота обычно 0.1 Гц во избежание излишнего дрейфа базовой линии.
Многие аппараты ЭКГ содержат встроенный источник 1 мВ, который используется для калибровки. Часто оператор может отрегулировать коэффициент усиления таким образом, что когда на вход подается импульс 1 мВ, на выходе величина сигнала составит около 1 см. В таких случаях специалист по биомедицинскому оборудованию должен проверить внутреннюю калибровку с использованием высококачественного вольтметра.
Также специалист должен обеспечить генерацию точного входного сигнала 1 мВ и настроить коэффициент усиления в аппарате для обеспечения желаемого выходного отклонения на самописце или дисплее. Большинство поставляемых генераторов не имеет прецизионной регулировки уровня выходного сигнала. На выходе функционального генератора можно установить делитель напряжения, как показано на рис. 10.10. К сожалению, для настройки выходной амплитуды необходим очень качественный осциллограф с дифференциальным входом.
Рис. 10.10.Генерация входного сигнала 1 мВ
Другой способ получить сигналы столь низкой амплитуды заключается в использовании резисторов с малым отклонением от номинального значения, образующих прецизионную схему деления 100:1 или 1000:1, и применении осциллографа соответствующего класса точности для регулировки генератора при получении 0,1 В или 1,0 В соответственно. Другой подход состоит в использовании специально спроектированного симулятора ЭКГ, показанного на рис. 10.11. Многие из имеющихся устройств дают имитацию форм сигналов ЭКГ и кровяного давления, а также имеют выход калиброванных импульсов.
Рис. 10.11. Симулятор физиологических сигналов
Следует также выполнить и другие тесты: проверить частотную характеристику и коэффициент ослабления синфазного сигнала. Частота среза по ВЧ определяется точкой, в которой амплитуда сигнала уменьшится до 70 % своего исходного значения. Нижнюю граничную частоту найти не так просто. При частоте 0,05 Гц 1 цикл будет продолжаться 20 с, что сделает обычный тест очень утомительным занятием. Лучший метод заключается в подаче на вход последовательности прямоугольных импульсов с амплитудой 1 мВ и наблюдение времени, необходимого для того, чтобы выходной сигнал упа