Поиск неисправностей в электронике — страница 60 из 72

л до 0,5 мВ. Чем большее время для этого требуется, тем ниже граничная частота. Это соотношение определяется формулой:

F = 0,22/Т, где Т — период следования прямоугольных импульсов.

Для измерения коэффициента ослабления синфазного сигнала подается сильный синфазный сигнал, наблюдается выходной сигнал и рассчитывается усиление синфазного сигнала, как это показано на рис. 10.12. Затем измеряется дифференциальное усиление, и их отношение дает искомый коэффициент. Минимально допустимым коэффициентом ослабления синфазного сигнала считается 100 000.



Рис. 10.12.Измерение коэффициента ослабления синфазного сигнала


Сопротивление утечки проводов и изоляция пациента также нуждаются в регулярной проверке. При тестировании просто проводятся измерения тока, уходящего через вход аппарата ЭКГ и через пациента при отключении аппарата от земли (рис. 10.13).



Рис. 10.13.Тест утечки проводов


Каждый провод должен иметь ток меньше 10 мкА. Тест изоляции определяет, сколько тока будет протекать от пациента на входы аппарата ЭКГ, если пациент коснется 220 В переменного тока, как это показано на рис. 10.14.



Рис. 10.14.Тест входной изоляции


Должным образом изолированный усилитель должен давать при этих условиях менее 20 мкА. Многие тестеры на электрической безопасности содержат такую стандартную функцию.

Большинство проблем, случающихся с аппаратами ЭКГ, связаны чаще всего с ошибками оператора и физиологическими факторами, а не неисправностями в схемах. Первичная проблема заключается в плохом контакте электродов. Это может быть вызвано многими причинами: высох гель для электродов, кожа пациента может иметь аномально высокое сопротивление, которое воздействует на эффективность работы электродов, адгезив не обеспечивает контакт с кожей в достаточной степени. Например, для людей с жирной кожей электрод и поверхность адгезивного диска должны быть целиком протерты спиртом. Для пациента с очень сухой кожей необходимо протереть спиртом кожу в месте контакта перед установкой электродов. В любом случае должен присутствовать гель для электродов.

Быстрый тест может идентифицировать проблему, если она связана с неисправностью одного из электродов. Просмотрите результаты, снятые каждым из электродов I, II, III. Если один из них неисправен, то два графика будут иметь излишний шум 50 Гц и сам выход будет некачественным. Третий график будет

нормальным. Дефект, вероятно, содержится в общем для двух некачественных изображений электроде.

Рис. 10.15 показывает два примера такого теста. В первом непосредственно после калибровочного импульса шум 50 Гц присутствует на выводах I, III. Это значит, что дефект в электроде левой руки. Во втором смещение базового уровня выводов II, III показывает, что проблема в электроде левой ноги.



Рис. 10.15.Признаки неисправности в одном из электродов


Если обнаружена неисправность электронной схемы, то наиболее эффективным будет подача сигнала моделирования ЭКГ, а также инспекция прохождения этого сигнала по схеме. Методика «разделяй и властвуй» эффективна в процессе исключения, который применяется и в других системах. Любые детали на замену, особенно схема изолированного предусилителя, должны приобретаться у производителя оборудования для обеспечения их соответствия характеристикам изоляции и коэффициента ослабления синфазного сигнала.


Электроэнцефалографы

Биопотенциалы вырабатываются и другими органами. Еще один диагностический инструмент, подобный ЭКГ, это электроэнцефалограф. ЭЭГ измеряет нервную активность мозга и выдаст формы сигналов, которые распечатываются многоканальным самописцем (рис. 10.16).



Рис. 10.16. Электроэнцефалограф


Этот прибор часто используется для наблюдения пациента, подключенного к системе поддержания жизнедеятельности, чтобы следить за работой мозга для обследования больных с различными неврологическими и сенсорными проблемами.

ЭЭГ имеет много усилителей и проводов, которые позволяют поместить на волосистую часть кожи головы множество электродов и наблюдать возникающую картину одновременно. Сигналы имеют среднюю амплитуду 50 мкВ, что делает коэффициент ослабления синфазного сигнала очень важным показателем для ЭЭГ. Обслуживание прибора с множеством идентичных каналов дает несколько удобных возможностей специалисту. Изготовители часто собирают подобные аппараты с использованием модулей, так что каждый усилитель представляет собой отдельный модуль. Если в одном канале возникает неисправность, можно менять местами платы предусилителей, чтобы проверить, переходит ли дефект на другой канал (проблема в плате) или же неисправность остается на месте (проблема может быть в кабеле, идущем к пациенту или выходных устройствах).


Электромиографы

Электромиограф (ЭМГ) используется для измерения реакции скелетных мышц. Измерения времени реакции, которые называются исследованиями нервной проводимости и скорости проводимости, могут выполняться с помощью стимуляции нервной системы импульсом тока, например, на кисти, и измерения реакции на мышцах плеча, что дает ценную информацию медику. Так, защемленный нерв замедляет скорость импульса, это увеличивает задержку или время задержки. ЭМГ также позволяет измерить множество различных показателей мышечной активности, например, действие сфинктеров. Мочевой пузырь накачивается, как воздушный шар, двуокисью углерода, и электроды измеряют реакцию мышц, пытающихся удержать его. Другие аппараты ЭМГ используются в операционных для измерения неврологической активности во время сложных операций на мозге и позвоночнике.

Все приборы, которые измеряют биопотенциалы — ЭКГ, ЭЭГ и ЭМГ — имеют очень малые значения входных сигналов и используют усилители, которые должны быть изолированы от земли. Это может вызвать определенные затруднения у специалиста при прослеживании сигнала от входа до выхода. Использование обычного, заземленного осциллографа с одним щупом может вызвать значительный шум в схеме. Кроме того, осциллограф сам по себе не может работать с низкими уровнями сигналов при очень малом отношении сигнал/шум. Лучший выход — использовать высококачественный дифференциальный осциллограф, у которого ни один из входных каналов не проводит измерения относительно земли. Многие двухканальные осциллографы позволяют инвертировать канал 2 и суммировать его с каналом 1 для обеспечения дифференциальных измерений. После того как сигнал был усилен изолированным предусилителем, можно вспомнить о традиционных методах обслуживания аналоговых схем.


Самописцы

Все описанные выше устройства, связанные с измерением биопотенциалов, используют самописцы для распечатки результатов проведенных тестов — механизмы. подающие бумагу с постоянной скоростью через устройство, которое ставит на бумаге пометки. Бумага перемещается по оси X, а устройство, делающее пометки, — по оси Y. Это дает график изменения биологического сигнала во времени. В более старых самописцах усиленный биологический сигнал подастся в двухтактный усилитель с выходным током, достаточным для отклонения катушки гальванометра. Перо, которое механически закреплено на выходном валу гальванометра, ставит отметки на бумаге.

Многие самописцы в прошлом использовали перо с подогревом острия и термочувствительную бумагу. Ширина линии определялась количеством тепла на острие пера. Постепенно на кончике пишущего механизма накапливалась грязь, что давало очень широкие линии, сигнализирующие о том, что настало время для замены.

Другие производители использовали чернильные перья. Эти системы при правильной настройке давали очень высококачественные графики. Перо было просто капиллярной трубкой, конец которой находился в контакте с бумагой. Чернила выходили под давлением. Если перо не было настроено для обеспечения контакта с бумагой по всему периметру, чернила образовывали капли и расплывались. Одной из процедур технического обслуживания для этих приборов была тщательная очистка острия пера с помощью бумаги.

Сейчас индустрия здравоохранения все еще использует значительное число упомянутых самописцев. Однако в последние годы наметилась тенденция к использованию цифровой регистрации физиологических сигналов.

Цифровые самописцы используют линейный массив нагревательных элементов с цифровым управлением. Они располагаются очень близко друг к другу и могут давать весьма четкие линии на любом месте страницы. По мере того как бумага подается через нагревательный элемент, цифровая форма физиологического сигнала нагревает соответствующие точки элемента, что в результате приводит к образованию отметки на бумаге. С помощью того же элемента можно напечатать буквенно-цифровые символы, посылая сигналы на соответствующие термоэлементы, что похоже на то. как компьютер посылает их на матричный принтер. Некоторые системы используют даже рулон теплочувствительной бумаги и печатают масштабную сетку на диаграммах вместе с биосигналом (рис. 10.17).



Рис. 10.17.График на ленте самописца, полученный цифровым способом


Рентгеновские установки

Рентгеновское излучение было открыто в начале XX века и быстро стало важнейшим инструментом в медицине. Над технологией построения подобных машин размышлял еще Эдисон около ста лет назад. Главное достоинство этого изобретения в способности проникать сквозь объекты. Рентгеновские лучи представляют собой жесткое коротковолновое электромагнитное излучение, подобное свету и радиоволнам, действующее на фотопленку и флуоресцентные материалы. Таким образом получается изображение. Современные рентгеновские установки значительно продвинулись в эффективности, качестве изображений, системах управления, безопасности и обработке результатов с помощью компьютеров.

Когда электромагнитное излучение попадает на материалы с различными свойствами, одна часть его отражается, другая поглощается, а третья проходит сквозь материал. Частота излучения, энергетический уровень, тип материала определяют соотношение между этими тремя составляющими. Рентгеновские лучи могут проходить через мягкие ткани гораздо легче, чем через кости. Для получения рентгеновского снимка пациента помещают между источником рентгеновского излучения и фотопленкой. Лучи, которые проходят через ткани, оставляют на пленке темные области, а област