Поиски истины — страница 2 из 44

Мы не знаем заранее, при каком изменении экспериментальных условий перестанет подтверждаться найденный нами закон природы. Чтобы обнаружить нарушение, следует сначала предположить самое простое: закон можно распространить и за пределы условий, при которых он был установлен. И проверять, приводит ли это к противоречию с новыми экспериментами.

Мы твердо знаем, что дальнейшее развитие науки не отменит установленных соотношений, а только выяснит область их применимости. Именно стабильность достижений науки и позволяет разграничить области достоверного и невозможного.

«Наука - это истина, помноженная на сомнение»

Однако не всегда разграничение достоверного и невозможного делалось достаточно основательно. История знает случаи, когда в оценке возможного ошибались не только люди, далекие от науки, но и сами ученые.

В начале прошлого века Французская академия вынесла постановление не рассматривать работы, содержащие описания камней, падающих с неба. Казалось, что все описания метеоритов - «небесных камней» - плод фантазии, поскольку камням неоткуда падать. Это очень опасный путь - отрицать и отметать все, что не находит объяснения.

Существует много примеров того, как предвзятые мнения тормозили развитие науки. Когда в 30-х годах готовился эксперимент по проверке закона зеркальной симметрии при бета-распаде, физики-теоретики были настолько уверены в незыблемости этого закона, что высмеяли экспериментаторов и эксперимент не был поставлен. Только в 50-х годах теоретики пришли к заключению, что закон этот может нарушаться именно при р-распаде, и опыт подтвердил их заключение.

Один из самых выдающихся физиков XX века, Вольфганг Паули, считал непреодолимым недостатком теории электронов Дирака то, что она предсказывала существование позитронов, которые тогда еще не были обнаружены.

Даже Альберт Эйнштейн не избежал подобной ошибки. После того как была создана общая теория относительности и показано, что вблизи массивных тел евклидова геометрия нарушается, Эйнштейн сделал следующий, неслыханный по смелости шаг. Он применил свою теорию тяготения к миру в целом, заменив, как это делается при изучении газа, истинное распределение масс во Вселенной на равномерное с некоторой средней плотностью материи.

Обнаружилось, что уравнения тяготения для такого мира не допускают стационарного решения. Между тем Эйнштейну хотелось получить решение, описывающее мир, замкнутый сам на себя, с независящим от времени радиусом кривизны. В этом и состояла предвзятость. Ему пришлось искусственно ввести дополнительное слагаемое, нарушившее красоту уравнений тяготения.

Примерно в это же время замечательный петроградский математик Александр Александрович Фридман (1888-1925) исследовал возможные решения уравнений Эйнштейна и пришел к заключению, что Вселенная расширяется и что наряду с замкнутой моделью Вселенной может - в зависимости от средней плотности материи- существовать и открытая модель, в которой масштабы мира неограниченно возрастают. Эйнштейн сначала раскритиковал работу Фридмана, а затем полностью с ней согласился и отказался от дополнительного члена в уравнениях тяготения. Вот что написал Эйнштейн в своей второй заметке о работе Фридмана: «Моя критика, как я убедился из письма Фридмана, сообщенного мне г-ном Крутковым (профессор Ленинградского университета, член-корреспондент АН СССР Юрий Александрович Прутков. - А. М.), основывалась на ошибке в вычислениях. Я считаю результаты Фридмана правильными и проливающими новый свет».

Эти слова стали известны Фридману незадолго до его кончины. Решение Фридмана получило экспериментальное подтверждение в 1929 году, когда американский астроном Эдвин Хаббл установил, что Вселенная расширяется.

В наше время все случаи подобных ошибок тщательно анализируются и из них делаются методологические выводы. Благодаря хорошо развитым средствам связи, в обсуждении спорных вопросов могут участвовать ученые всех стран. Поэтому сейчас научные заблуждения если и возникают, то живут очень недолго.

«Хочется верить, но нет оснований»

Наука не только устанавливает границы возможного, но и безжалостно отделяет догадки, пусть даже правдоподобные, от доказанных утверждений. Если бы не это оградительное правило, наука потонула бы в море суеверий и шатких предположений. Отделяя правдоподобное от доказанного, наука выясняет, какие утверждения требуют дальнейших исследований.

Предположение, что жизнь существует и в других мирах, не противоречит науке, и пришельцы из этих миров могли бы посетить Землю. Но нет никаких оснований утверждать, что они действительно здесь побывали. Так же как нет, по мнению специалистов, никаких оснований считать, что летающие тарелки представляют собой что-либо иное, чем явления атмосферной оптики.

Разумеется, это очень скучная должность-отрицать все необычное. Но зато в результате такого отбора яснее выступает не мнимое, а настоящее чудо. Например, ставший сейчас широко известным «парадокс близнецов».

Из теории относительности следует, что если один из близнецов отправится путешествовать на корабле, движущемся со скоростью, сравнимой со скоростью света, то, вернувшись, он окажется моложе своего брата, не совершившего путешествия. И это удивительное утверждение доказано не только теоретически, но и экспериментально. Сверхточные атомные часы, отправленные на самолете, после возвращения показали меньшее время, чем такие же часы, остававшиеся на Земле. Конечно, скорость самолета v много меньше скорости света, и потому запаздывание было небольшим. Оно составляет долю порядка v2/c2 от времени полета. Тем не менее это запаздывание (порядка 10-8 секунды) не только было установлено, но и совпало в пределах ошибок эксперимента с предсказанием теории.

Вот еще один пример. Всегда считалось, что морские фауна и флора существуют только на небольших глубинах, куда проникают солнечные лучи и возможен фотосинтез. Но недавно на дне океана на глубине нескольких километров, где нет и следа солнечных лучей, были обнаружены области повышенной температуры вулканической природы, в которых, по-видимому, в результате процессов химического синтеза появились свои фауна и флора. Докладывал об этом известный океанолог. О чудовище озера Лох-Несс и о снежном человеке он сказал: «Очень хочется верить, но нет оснований». Слова «нет оснований» означают, что вопрос изучался, и в результате изучения обнаружилось, что нет оснований доверять первоначальным утверждениям. Это и есть формула научного подхода: «хочется верить», но, раз «нет оснований», надо от этой веры отказаться.

Как рождаются легенды

Стремление к таинственному, необычному, жажда чуда заложены в природе человека так же, как и стремление к прекрасному.

Эйнштейн говорил: «Самое прекрасное и глубокое переживание, выпадающее на долю человека, - это ощущение таинственности». По мнению Эйнштейна, ощущение таинственности лежит в основе всех наиболее глубоких тенденций в науке и искусстве. Но, к сожалению, именно стремление к таинственному есть причина многих антинаучных слухов.

Ощущение таинственности питало мифологию, эпос, литературу, искусство. Восторженное ожидание чуда пронизывает средневековую философию, одушевляет искусство. Эпоха Возрождения открывает новое чудо - всемогущего, подобного богу человека. Но рядом с возвышенной мечтой существует темный мир суеверий. В то время как в большом мире создаются шедевры поэзии и живописи, когда совершается глубочайший переворот в науке, культуре, мировоззрении человека, вызванный работами Коперника, Галилея, Кеплера, малый мир занимается астрологией, гадает на трупах, вызывает демонов, зарывает в землю ослов, чтобы вызвать дождь… В наше время (говорили Ильф и Петров) тоже существуют рядом два мира - большой и малый. В большом мире строят автоматические лаборатории, которые долетают до других планет, фотографируют их, делают анализы и посылают данные на Землю. В малом мире ходят по рукам фотографии пришельцев-гуманоидов, которых, как известно, имеется три вида - неприятные внешне, совершенно неотличимые от европейцев, и гиганты, переворачивающие одной рукой тракторы на своем пути.

Можно ли поверить в магические свойства подковы, прибитой к двери? Разумеется, сама вера в примету способна так изменить поведение человека, что примета начнет действовать. Очень вероятно, что человек, ждущий неприятностей тринадцатого в понедельник, оступится именно в этот день.

Но следует ли, отвлекаясь от этого, допускать логическую связь между подковой и нашей судьбой? Это так же неоправданно, как пытаться установить связь между радиусами орбит планет солнечной системы и отношениями звуковых частот музыкальных аккордов. Если бы связь и обнаружилась, она была бы чисто случайной, поскольку явления несопоставимы - они определяются разными законами природы. Поиски подобных соотношений, простительные на заре Нового времени, в наши дни - возвращение к числовой мистике кабалистов.

Вот еще пример сопоставления несопоставимого - утверждение, что движение электронов в атоме будто бы аналогично движению планет вокруг Солнца. Но поведение электронов в атоме управляется законами квантовой механики, совершенно непохожими на законы классической механики, определяющей движение планет.

Электрические силы взаимодействия электронов с ядром в 1039 раз сильнее, чем силы тяготения, и, наконец, электроны отталкиваются друг от друга, а планеты притягиваются. Никакого основания для аналогии не существует. Внешнее сходство явлений исчерпывается тем, что сила взаимодействия между ионизированным атомом и электроном на больших расстояниях падает по тому же закону, что и сила тяготения. Заблуждение поддерживается еще и тем, что во многих книгах, содержащих описание таблицы Менделеева, для простоты рисуют электронные орбиты вместо того, чтобы в соответствии с законами квантовой механики изображать электронные облака различной формы.

Все совпадения такого рода при проверке оказываются результатами сознательной или бессознательной подтасовки фактов. Тем не менее постоянно возникают легенды, связывающие несопоставимое или, в лучшем случае, делающие это без серьезных оснований. Легенды меняются в зависимости от времени и места. Мода на спиритические сеансы появляется и пропадает, сменяясь разговорами о бескровной хирургии, Бермудском треугольнике, летающих тарелках…