стве. У Янга и Миллса три поля имели заряды +, -, 0. Они могли изменять свой заряд, взаимодействуя с нуклонами (переводя протон в нейтрон и обратно). И, что примечательно, поля взаимодействуют с нуклоном с тем же зарядом, что и между собой.
Как только выяснилась многоцветность кварков и глюонов, возникла идея описать соответствующие поля с помощью уравнений, аналогичных уравнениям Янга - Миллса. Нужно было только обобщить эти уравнения на случай ие трех, а восьми полей, преобразующихся в цветовом пространстве, и приписать кварку, кроме электрического заряда, особый цветовой заряд, определяющий его взаимодействие с глюонным полем, подобно тому как заряд электрона определяет его взаимодействие с электромагнитным полем.
Так у теоретиков появился математический аппарат, который позволил предсказывать новые явления.
Это великолепный пример того, как красивое построение обязательно находит себе применение. Все дальнейшее развитие физики элементарных частиц подтвердило ожидания теоретиков. Обобщенные уравнения Янга - Миллса вместе с уравнениями для кварковых полей действительно описывают сильные взаимодействия элементарных частиц. По аналогии с электродинамикой эту теорию назвали «хромодинамика» (от греческого слова «xpo;j.oq» - цвет). Пока не удается решить эти уравнения во всех случаях. Взаимодействие глюонных полей и кварков на больших расстояниях не мало, как в случае электродинамики, а это всегда крайне затрудняет решение.
Уравнения Янга - Миллса имеют много удивительных особенностей, но об одной из них нельзя не рассказать. Истинное взаимодействие глюонов и кварков крайне мало. Однако каждый кварк притягивает к себе глюонное поле и поэтому окружен глюонным облаком, которое увеличивает его взаимодействие с другим кварком или с глюонным полем. Такой эффективный заряд совпадает с истинным (как иногда говорят, с «голым» или с «затравочным»), когда расстояния между кварками или глюонными сгустками очень малы. По мере увеличения расстояния заряд растет, сначала медленно, а затем, на расстояниях порядка размеров адронов (10-14 сантиметра), резко возрастает. При больших энергиях, когда частицы сближаются на малые расстояния, заряд уменьшается, и взаимодействие между кварками убывает. Это явление называется «асимптотической свободой». Но при малом взаимодействии хромоди-намика не сложнее электродинамики. Поэтому решения уравнений хромодинамики хорошо исследованы при больших энергиях.
Удивительное явление уменьшения заряда с ростом энергии подтвердилось экспериментально в количественном согласии с теорией. Объяснилось много интересных явлений в области больших энергий, например, множественное рождение частиц при столкновении электрона с позитроном.
Но как раз в той области масштабов и энергий, которые определяют структуру адронов, а следовательно, и их массы, заряд велик, и решение пока не удается найти аналитически.
Необходимо также объяснить, почему на опыте в свободном состоянии наблюдаются только белые частицы. Мы уже упоминали без доказательства, что глюонное поле кварка и вообще любого цветного объекта не убывает с расстоянием. В отличие от электрического поля вокруг точечного электрического заряда силовые линии глюонного поля не распределены равномерно по всем направлениям, а сосредоточены в узкой трубке, соединяющей кварк и антикварк, или, для изолированного кварка, идущей на бесконечность. Но если это так, то энергия цветового объекта будет бесконечно большой за счет энергии глюонного поля в трубке, идущей от цветного заряда к бесконечности. Тогда легко понять,
почему кварки не могут жить друг без друга и почему в изолированном состоянии есть только белые объекты. У белых частиц нет растущего глюонного поля, они глюонно нейтральны.
К сожалению, это очень правдоподобное свойство глюонного поля пока не удалось убедительно доказать.
В последние годы теоретики получили неожиданную поддержку: часть их работы взяли на себя ЭВМ. С их помощью уравнения хромодинамики удается, правда пока довольно грубо, решать численно. Результаты убеждают в правильности хромодинамики не только для больших, но и для малых энергий. Массы и взаимодействия адронов получились близкими к экспериментальным.
Так полузабытые уравнения Янга - Миллса получили новую жизнь и сделались основой одного из важнейших разделов теории элементарных частиц - теории сильных взаимодействий.
КАК РАБОТАЮТ ФИЗИКИ
В этой главе мы посмотрим уже не с высоты птичьего полета, а с более близкого расстояния, как работают физики-теоретики. Естественно, я ограничиваюсь теоретической физикой - это моя профессия, говорить о ней мне легче и интереснее.
Можно очень хорошо проследить особенности работы теоретиков, обсуждая главные события развития квантовой теории от ее зарождения, когда был совершенно неясен смысл сделанных предположений, до глубокого понимания, возникшего в спорах Нильса Бора с Эйнштейном. От общего анализа мы перейдем к более конкретному - к тому, как работают физики на первой стадии, делая оценки величин и их соотношений, прежде чем пытаться решить задачу точно. После этого покажем, как такой качественный анализ прилагается к задачам квантовой механики и к проблеме квантования полей.
Но сначала поговорим о задачах и особенностях физики и о ее связи с математикой.
ЗАДАЧИ ФИЗИКИ
Без участия воображения все наши сведения о природе ограничились бы классификацией фактов.
Д. Тнндаль
Есть две близкие и вместе с тем разные профессии - экспериментальная и теоретическая физика. У них общая цель - познание мира вещей; их методы разные, но они немыслимы друг без друга.
Физик формулирует свои законы, пользуясь математическими понятиями и математическим аппаратом, но задачи и методы в математике и физике резко различаются.
Наметим, разумеется только в очень общих чертах, главные направления и важнейшие задачи физики.
Экспериментаторы и теоретики
Существуют два типа физиков - экспериментаторы и теоретики, причем эти две профессии почти никогда не совмещаются в одном человеке. Физики-экспериментаторы исследуют соотношения между физическими величинами, или, говоря более торжественно, открывают законы природы, пользуясь экспериментальными установками, то есть производя измерения физических величин с помощью приборов. Надо глубоко понять связи между изучаемыми величинами, чтобы знать, как и что измерять. Физики-теоретики изучают природу, пользуясь только бумагой и карандашом, выводят новые соотношения между наблюдаемыми величинами, опираясь на найденные ранее экспериментально и теоретически законы природы. Причина разделения этих двух профессий не только в том, что каждая из них требует специальных знаний - знания методов измерения в одном случае и владения математическим аппаратом - в другом. Главная причина в том, что эти профессии требуют различных типов мышления и различных форм интуиции. Интуиция, то есть способность подсознательно находить правильный путь, играет важнейшую роль, особенно на первых стадиях работы. Поскольку теоретическая физика имеет дело с более отвлеченными понятиями, чем физика экспериментальная, физику-теоретику требуется более абстрактная форма интуиции, близкая иногда к интуиции математика.
В прошлом веке, когда физика не была еще так специализирована, многие физики совмещали обе профессии. Так, Джеймс Кларк Максвелл, получивший удивительные уравнения, объединяющие электричество, магнетизм и оптику, занимался и экспериментами. Генрих Герц, обнаруживший экспериментально электромагнитные волны, был одновременно и хорошим теоретиком. И все-таки в каждом случае можно указать, какая нз профессий главная: для Максвелла - это теоретическая физика, а для Герца - экспериментальная.
В XX веке одним из са*мых замечательных физиков-экспериментаторов был английский ученый Эрнест Ре-зерфорд; изучая рассеяние альфа-частиц на атомах, он установил существование положительно заряженного ядра с радиусом, в 10 тысяч раз меньшим, чем радиус атомной оболочки. Великим физиком-теоретиком был Альберт Эйнштейн. Пользуясь только бумагой и карандашом, он создал теорию относительности, согласно которой время течет по-разному в неподвижной системе и в системе, движущейся равномерно относительно наблюдателя. Как показали эксперименты последних десятилетий, быстродвижущиеся нестабильные частицы, например мюон или пи-мезон, распадаются медленнее, чем неподвижные, в точном соответствии с предсказаниями теории относительности. При скорости, приближающейся к скорости света, время жизни частицы неограниченно возрастает.
Замечательный итальянский физик Энрико Ферми наряду со многими другими теоретическими работами создал теорию радиоактивного распада и вместе с физиками своей группы открыл экспериментально, что почти все элементы становятся радиоактивными при бомбардировке нейтронами. Но и в этом случае можно сказать, что главная профессия - теоретическая физика.
Прекрасным теоретиком, тесно связанным с экспериментом, был покойный академик Герш Ицкович Будкер, у которого теоретическая физика совмещалась с замечательными инженерными идеями. Он теоретически разработал ускоритель на встречных пучках заряженных частиц и руководил его созданием в новосибирском академгородке. В таком ускорителе вся энергия идет на рождение новых частиц, тогда как при столкновении энергичной частицы с неподвижной мишенью на рождение идет только малая доля.
Приведенные исключения подтверждают правило, и молодой человек, интересующийся физикой, должен решить для себя, какую из двух профессий он выбирает.
Физика и математика
Задача физика-теоретика - получать соотношения между наблюдаемыми величинами с помощью математических выкладок. Не означает ли это, что теоретическая физика представляет собой нечто вроде прикладной математики? Нет, не означает. И по характеру задач, и по методам подхода к задачам математика и физика категорически различаются.
В математике важнейшую роль играет логическая строгость, безупречность всех выводов вместе с исследованием всех логически возможных соотношений, вытекающих из принятых аксиом. Задача физики - воссоздать по возможности точную картину мира без строгих правил игры, используя все известные экспериментальные и теоретические факты, используя основанные на интуиции догадки, которые в дальнейшем будут проверены на опыте. Так, математик исследует все логически возможные типы геометрий; физик же выясняет, какие геометрические соотношения осуществляются в нашем мире.